精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中, 平面,在平行四边形中,

(1)求证: 平面

(2)求与平面所成角的正弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1连接,取中点,连接 ,由中位线可得 ,根据 ,可推出 ,即可证明平面;(2)连接,根据题设条件分别求出 以及,通过 可得,从而可求出点到平面的距离,通过解三角形即可求出与平面所成角的正弦值.

试题解析:(1)证明:连接,取中点,连接 .

分别为的中点

又∵

,从而 平面 平面

平面

(2)解:连接,可计算得 ,设点到平面的距离为,则由 ,得,所以由,知.

与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

时, 恒成立,求范围;

方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的标准方程为 为抛物线上一动点, )为其对称轴上一点,直线与抛物线的另一个交点为.当为抛物线的焦点且直线与其对称轴垂直时, 的面积为18.

(1)求抛物线的标准方程;

(2)记,若值与点位置无关,则称此时的点为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的极值及单调区间;

(2)若在区间上至少存在一点,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)若两函数图象有两个不同的公共点,求实数的取值范围;

(2)若, ,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

(1)求实数的取值范围;

(2)设 )是的两个零点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是函数的极值点.

(1)若,求函数的最小值;

(2)若不是单调函数,且无最小值,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1若方程上有实数根求实数的取值范围

2上的最小值为求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的最小值;

(Ⅱ)解不等式

查看答案和解析>>

同步练习册答案