精英家教网 > 高中数学 > 题目详情
14.5-2$\sqrt{3}$与5+2$\sqrt{3}$的等比中项为$±\sqrt{13}$.

分析 利用等比中项的定义即可得出.

解答 解:5-2$\sqrt{3}$与5+2$\sqrt{3}$的等比中项为±$\sqrt{(5-2\sqrt{3})(5+2\sqrt{3})}$=±$\sqrt{13}$.
故答案为:$±\sqrt{13}$.

点评 本题考查了等比中项的定义,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知复数$\overline z$是复数z的共轭复数,$\overline z$=1+i,则$\frac{2i}{z}$=(  )
A.-1-iB.-1+iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,若角A、B、C成等差数列.
(1)求cosB的值;       
(2)若a、b、c成等比数列,求sinAsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列命题中:
①α=2kx+$\frac{π}{3}$(k∈Z)是tanα=$\sqrt{3}$的充分不必要条件; 
②已知命题P:?x∈R,lgx=0;
命题Q:?x∈R,2x>0,则P∧Q为真命题; 
③若|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|≠0,函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$|$\overrightarrow{a}$|x2+$\overrightarrow{a}$•$\overrightarrow{b}$x在R上有极值,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角范围为[$\frac{π}{3}$,π]; 
④在△ABC中,若cos(2B+C)+2sinAsinB<0,则△ABC为钝角三角形;
 ⑤在△ABC中,若(a2+c2-b2)tanB=$\sqrt{3}$ac,则B=60°.
其中正确命题的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:
①函数y=sin($\frac{5π}{2}$-2x)是偶函数;
②将函数y=cos2x的图象向左平移$\frac{π}{3}$单位,得到函数y=cos(2x+$\frac{π}{3}$)的图象;
③若函数y=cos($\frac{x}{3}$+φ),(0<φ<π)的一条对称轴方程为x=$\frac{9π}{4}$,则函数y=sin(2x-φ),(0≤x<π)的单调递减区间为[$\frac{3π}{8}$,$\frac{7π}{8}$];
④已知a=sin(sin2015°),b=sin(cos2015°),则 a<b.
其中正确的命题的序号是:①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙、丙三部机床独立工作,由一个工人照管,且一个工人不能同时照管两部或两部以上机床,某段时间内,它们不需要工人照管的概率分别为0.9、0.8和0.85,求在这段时间内,
(1)三部机床都不需要工人照管的概率;
(2)一人照管不过来而造成停工的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果定义在(-∞,0)∪(0,+∞)上的奇函数f(x)在(0,+∞)内是减函数,又有f(3)=0,则f(x)>0的解集为(-∞,-3)∪(0,3),x•f(x)<0的解集为(-∞,-3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,且f(-6)=-2,当x1,x2∈[0,3],且x1≠x2时,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0.则给出下列命题:
①f(2016)=-2;  
②x=-6为函数y=f(x)图象的一条对称轴;
③函数y=f(x)在(-9,-6)上为减函数; 
④方程f(x)=0在[-9,9]上有4个根;
其中正确的命题个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列运算结果正确的是(  )
A.a3+a2=a5B.(x+y)2=x2+y2C.x6+x2=x4D.(ab)2=a2b2

查看答案和解析>>

同步练习册答案