精英家教网 > 高中数学 > 题目详情
9.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y≥a恒成立,则实数a的最大值为(  )
A.2B.4C.6D.8

分析 由x+2y≥a恒成立,可得a不大于x+2y的最小值,运用乘1法和基本不等式,可得x+2y的最小值为8,进而得到a的最大值.

解答 解:x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,可得
x+2y=(x+2y)($\frac{2}{x}$+$\frac{1}{y}$)=4+$\frac{x}{y}$+$\frac{4y}{x}$≥4+2$\sqrt{\frac{x}{y}•\frac{4y}{x}}$=8,
当且仅当x=2y=4,取得最小值8.
由x+2y≥a恒成立,可得a≤8,
则a的最大值为8.
故选:D.

点评 本题考查不等式恒成立问题的解法,注意运用转化思想,考查基本不等式的运用:求最值,注意一正二定三等,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知四棱锥A-BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F为AD的中点.
(Ⅰ)求证:EF∥面ABC;
(Ⅱ)求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(-2,-1),B(a,3)且|AB|=5,则a等于(  )
A.1B.-5C.1或-5D.其他值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在四面体P-ABC中,PA⊥平面ABC,△ABC为正三角形,PA=2,AB=3,则该四面体外接球的表面积等于16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.分别过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左右焦点F1,F2的动直线l1,l2交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=2$\sqrt{3}$,|CD|=$\frac{4\sqrt{3}}{3}$.
(1)求椭圆E的方程;
(2)设点E1,E2的坐标分别为(-1,0),(1,0),证明|PE1|+|PE2|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x>0,那么3x+$\frac{4}{x}$的最小值为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算定积分$\int_1^a$(2x+$\frac{1}{x}$)dx=3+ln2,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设{an}是公比为正数的等比数列,a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求数列{(2n+1)an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=x2+mx+1,若对于任意的x∈R都有f(x)≥0恒成立,则实数m的取值范围是[-2,2].

查看答案和解析>>

同步练习册答案