精英家教网 > 高中数学 > 题目详情
19.已知四棱锥A-BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F为AD的中点.
(Ⅰ)求证:EF∥面ABC;
(Ⅱ)求三棱锥E-ACD的体积.

分析 (Ⅰ)取AC中点G,连接FG、BG,根据三角形中位线定理,得到四边形FGBE为平行四边形,进而得到EF∥BG,再结合线面平行的判定定理得到EF∥面ABC;
(Ⅱ)证明BG⊥面ADC,可得EF⊥面ADC,即可求出三棱锥E-ACD的体积.

解答 (Ⅰ)证明:取AC中点G,连结FG、BG
∵F,G分别是AD,AC的中点,∴FG∥CD,且FG=$\frac{1}{2}$DC=1.
∵BE∥CD∴FG与BE平行且相等,∴EF∥BG. 
∵EF?平面ABC,BG?平面ABC,
∴EF∥面ABC…(6分)
(Ⅱ)解:∵△ABC为等边三角形∴BG⊥AC,
又∵DC⊥面ABC,BG?面ABC∴DC⊥BG,
∴BG垂直于面ADC的两条相交直线AC,DC,∴BG⊥面ADC…(9分)
∵EF∥BG,∴EF⊥面ADC,
连结EC,三棱锥E-ACD的体积V=$\frac{1}{3}×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{6}$….(12分)

点评 本题考查的知识点是直线与平面平行的判定,棱锥的体积,其中熟练掌握空间线面平行或垂直的判定、性质、定义、几何特征是解答此类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在下列给出的命题中,所有正确命题的序号为②③④.
①若$\overrightarrow{a}•\overrightarrow{b}$>0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角;
②对?x,y∈R,若x+y≠0,则x≠1,或y≠-1;
③若实数x,y满足x2+y2=1,则$\frac{y}{x+2}$的最大值为$\frac{\sqrt{3}}{3}$;
④函数f(x)=3sin(2x-$\frac{π}{3}$)的图象关于点($\frac{2π}{3}$,0)对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.长方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为$\frac{5\sqrt{3}}{9}$,且四边形ABB1A1为正方形,则球O的直径为(  )
A.4B.$\sqrt{51}$C.4或$\sqrt{51}$D.4或5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知如图所示的三棱锥D-ABC的四个顶点均在球O的球面上,△ABC和△DBC所在的平面互相垂直,AB=3,AC=$\sqrt{3}$,BC=CD=BD=2$\sqrt{3}$,则球O的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC为等边三角形,AE=1,BD=2,CD与平面ABCDE所成角的正弦值为$\frac{{\sqrt{6}}}{4}$.
(1)若F是线段CD的中点,证明:EF⊥平面DBC;
(2)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{xlnx,x>0}\end{array}\right.$ 图象上有且仅有四个不同的点关于直线y=e的对称点在函数g(x)=kx+2e+1的图象上,则实数k的取值范围为(  )
A.(1,2)B.(-1,0)C.(-2,-1)D.(-6,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax-$\frac{1}{2}$x2-bln(x+1)(a>0),g(x)=ex-x-1,曲线y=f(x)与y=g(x)在原点处有公共的切线.
(1)若x=0为f(x)的极大值点,求f(x)的单调区间(用a表示);
(2)若?x≥0,g(x)≥f(x)+$\frac{1}{2}$x2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知直四棱柱ABCD-A1B1C1D1的底面中,DB=4,∠DAB=∠DCB=90°,∠BDC=∠BDA=60°.
(1)求直线AC与平面BB1C1C所成的角正弦值;
(2)若异面直线BC1与AC所成的角的余弦值为$\frac{{\sqrt{3}}}{4}$,求二面角B-A1C1-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y≥a恒成立,则实数a的最大值为(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案