| A. | 4 | B. | $\sqrt{51}$ | C. | 4或$\sqrt{51}$ | D. | 4或5 |
分析 设AB=2x,则AE=x,BC=$\sqrt{9-{x}^{2}}$,由余弦定理可得x2=9+3x2+9-2×3×$\sqrt{9+3{x}^{2}}$×$\frac{5\sqrt{3}}{9}$,求出x,即可求出球O的直径.
解答
解:设AB=2x,则AE=x,BC=$\sqrt{9-{x}^{2}}$,
∴AC=$\sqrt{9+3{x}^{2}}$,
由余弦定理可得x2=9+3x2+9-2×3×$\sqrt{9+3{x}^{2}}$×$\frac{5\sqrt{3}}{9}$,
∴x=1或$\sqrt{6}$,
∴AB=2,BC=2$\sqrt{2}$,球O的直径为$\sqrt{4+4+8}$=4,
或AB=2$\sqrt{6}$,BC=$\sqrt{3}$,球O的直径为$\sqrt{24+24+3}$=$\sqrt{51}$.
故选:C.
点评 本题考查球O的直径,考查余弦定理,考查学生的计算能力,正确求出AB是关键.
科目:高中数学 来源: 题型:选择题
| A. | {y|y≤1} | B. | {y|1≤y<5} | C. | {x|x≥5} | D. | {y|1<y≤5} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com