分析 (1)根据线面垂直的判定定理进行证明即可.
(2)建立坐标系,求出平面的法向量,利用向量法进行求解即可.
解答
(1)证明:取BC的中点为M,连接FM,则可证AM⊥平面BCD,四边形AEFM为平行四边形,
所以EF∥AM,所以EF⊥平面DBC;…(6分)
(2)解:取AB的中点O,连结OC,OD,则OC⊥平面ABD,∠CDO即是CD与平面ABDE所成角,$\frac{OC}{CD}=\frac{{\sqrt{6}}}{4}$,
设AB=x,则有$\frac{{\frac{{\sqrt{3}}}{2}x}}{{\sqrt{{x^2}+4}}}=\frac{{\sqrt{6}}}{4}$,得AB=2,取DE的中点为G,
以O为原点,OC为x轴,OB为y轴,OG为z轴,建立如图空间直角坐标系,则$C(\sqrt{3},0,0),B(0,1,0),D(0,1,2),E(0,-1,1),F(\frac{{\sqrt{3}}}{2},\frac{1}{2},1)$,
由(1)知:BF⊥平面DEC,又取平面DEC的一个法向量$\overrightarrow{n}$=($\sqrt{3}$,-1,2),
设平面BCE的一个法向量$\overrightarrow{m}$=(1,y,z),由,由此得平面BCE的一个法向量$\overrightarrow{m}$=(1,$\sqrt{3}$,2$\sqrt{3}$),
则cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}-\sqrt{3}+4\sqrt{3}}{\sqrt{3+1+4}•\sqrt{1+3+12}}$=$\frac{4\sqrt{3}}{2\sqrt{2}•4}$=$\frac{{\sqrt{6}}}{4}$
所以二面角D-EC-B的平面角的余弦值为$\frac{{\sqrt{6}}}{4}$…(12分)
点评 本题主要考查线面垂直判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{7}{3}$ | C. | $\frac{7}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{e}$,1) | B. | (-∞,$\frac{1}{e}$) | C. | (-1,+∞) | D. | (-$\frac{1}{e}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com