精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=lnx+ax,若存在x0∈(0,+∞),使f(x0)>0,则a的取值范围是(  )
A.(-$\frac{1}{e}$,1)B.(-∞,$\frac{1}{e}$)C.(-1,+∞)D.(-$\frac{1}{e}$,+∞)

分析 求出函数的导数,通过讨论a的范围,确定函数的单调性,求出f(x)的最大值,得到关于a的不等式,解出即可.

解答 解:f(x)的定义域是(0,+∞),
f′(x)=$\frac{1}{x}$+a=$\frac{1+ax}{x}$,
a≥0时,f′(x)>0,f(x)在(0,+∞)递增,f(1)=a≥0,
故存在x0∈(0,+∞),使f(x0)>0,
a<0时,令f′(x)>0,解得:0<x<-$\frac{1}{a}$,
令f′(x)<0,解得:x>-$\frac{1}{a}$,
∴f(x)在(0,-$\frac{1}{a}$)递增,在(-$\frac{1}{a}$,+∞)递减,
∴f(x)max=f(-$\frac{1}{a}$)=ln(-$\frac{1}{a}$)-1>0,解得:a>-$\frac{1}{e}$,
综上,a的范围是(-$\frac{1}{e}$,+∞),
故选:D.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.若函数f(x)=log2[(a+2)x2+(a+2)x+1]的定义域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.从某工厂生产的某产品中抽取500件,测量这些产品的一项质量指标,由测量结果得到下列频数分布表:
指标值分组[75,85)[85,95)[95,105)[105,115)[115,125]
频数3012021010040
(1)作出这些数据的频率分布直方图,并估计该产品质量指标值的平均数$\overline x$及方差s2(同一组中的数据用该组的中点值作代表);
(2)可以认为这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2.近似为样本方差s2; 一件产品的质量指标不小于110时该产品为优质品;利用该正态分布,计算这种产品的优质品率p(结果保留小数点后4位).
(以下数据可供使用:若Z~N(μ,δ2),则P(μ-δ<ξ<μ+δ)=68.26%,P(μ-2δ<ξ<μ+2δ)=95.44%)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知随机变量ξ服从正态分布N(1,4),若p(ξ>4)=0.1,则p(-2≤ξ≤4)=0.8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知扇形的周长为20cm,当扇形的中心角为2弧度时,它有最大面积,最大面积是25cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC为等边三角形,AE=1,BD=2,CD与平面ABCDE所成角的正弦值为$\frac{{\sqrt{6}}}{4}$.
(1)若F是线段CD的中点,证明:EF⊥平面DBC;
(2)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知棱长等于$2\sqrt{3}$的正方体ABCD-A1B1C1D1,它的外接球的球心为O,点E是AB的中点,则过点E的平面截球O的截面面积的最小值为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设定点A(3,1),B是x轴上的动点,C是直线y=x上的动点,则△ABC周长的最小值是(  )
A.3$\sqrt{5}$B.$\sqrt{6}$C.2$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\frac{1}{3}$x3+x2-3x,若方程|f(x)|2+t|f(x)|+1=0有12个不同的根,则实数t的取值范围为(  )
A.(-$\frac{10}{3}$,-2)B.(-∞,-2)C.-$\frac{34}{15}$<t<-2D.(-1,2)

查看答案和解析>>

同步练习册答案