精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=$\frac{1}{3}$x3+x2-3x,若方程|f(x)|2+t|f(x)|+1=0有12个不同的根,则实数t的取值范围为(  )
A.(-$\frac{10}{3}$,-2)B.(-∞,-2)C.-$\frac{34}{15}$<t<-2D.(-1,2)

分析 求出函数f(x)的导数,判断函数的单调性和极值,利用换元法设|f(x)|=m,转化为一元二次函数根的分布进行求解即可.

解答 解:$f(x)=\frac{1}{3}{x^3}+{x^2}-3x,f'(x)={x^2}+2x-3=0$,
得x=-3,x=1,
由f′(x)>0得x>1或x<-3,即函数在(-∞,-3),(1,+∞)单调递增,
由f′(x)<0得-3<x<1,则函数在(-3,1)单调递减,
则函数的极大值为f(-3)=9,函数的极小值为$f(1)=-\frac{5}{3}$,
根据函数的图象可知,
设|f(x)|=m,可知m2+tm+1=0,原方程有12个不同的根,
则m2+tm+1=0方程应在$(0,\frac{5}{3})$内有两个不同的根,
设h(m)=m2+tm+1,
则$\left\{{\begin{array}{l}{h(\frac{5}{3})>0}\\{0<-\frac{t}{2}<\frac{5}{3}}\\{△={t^2}-4>0}\end{array}}\right.⇒-\frac{34}{15}<t<-2$,
所以取值的范围$-\frac{34}{15}<t<-2$.
故选:C

点评 本题主要考查函数与方程的应用,求函数的导数判断函数的极值和单调性,以及利用换元法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=lnx+ax,若存在x0∈(0,+∞),使f(x0)>0,则a的取值范围是(  )
A.(-$\frac{1}{e}$,1)B.(-∞,$\frac{1}{e}$)C.(-1,+∞)D.(-$\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设A,B,C,D四点是半径为3的球面上四点,则三棱锥A-BCD的最大体积为$8\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直角三角形ABC中,∠BAC=60°,点F在斜边AB上,且AB=4AF,D,E是平面ABC同一侧的两点,AD⊥平面ABC,BE⊥平面ABC,AD=3,AC=BE=4.
(1)求证:平面CDF⊥平面CEF;
(2)若点M是线段CB的中点,求EM与平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.${∫}_{0}^{1}$$\sqrt{x-{x}^{2}}$•dx=$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.分别过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左右焦点F1,F2的动直线l1,l2交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=2$\sqrt{3}$,|CD|=$\frac{4\sqrt{3}}{3}$.
(1)求椭圆E的方程;
(2)设点E1,E2的坐标分别为(-1,0),(1,0),证明|PE1|+|PE2|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个四面体的某个顶点上的三条棱两两垂直,这三条棱的长度分别为1、2、3,则这三条棱与此四面体的不经过这个顶点的一个面所成角大小的余弦的最大值为$\frac{3\sqrt{5}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.双曲线 $\frac{x^2}{36}$-$\frac{y^2}{64}$=1的右焦点坐标为(10,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,旅客从某旅游区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50米/分钟,在甲出发2分钟后,乙从A乘缆车到B,再从B匀速步行到C.假设缆车匀速直线运动的速度为130米/分钟,山路AC长1260米,经测量,cosA=$\frac{12}{13}$,cosC=$\frac{3}{5}$.
(1)求索道AB的长;
(2)问乙出发后多少分钟后,乙在缆车上与甲的距离最短?

查看答案和解析>>

同步练习册答案