精英家教网 > 高中数学 > 题目详情
10.设A,B,C,D四点是半径为3的球面上四点,则三棱锥A-BCD的最大体积为$8\sqrt{3}$.

分析 球内接三棱锥中正四面体的体积最大.设棱长为a,则由$R=\frac{{\sqrt{6}}}{4}a=3$,求出a,即可求出三棱锥A-BCD的最大体积.

解答 解:球内接三棱锥中正四面体的体积最大.
设棱长为a,则由$R=\frac{{\sqrt{6}}}{4}a=3$,得$a=2\sqrt{6}$,高为4,
所以${V_{ABCD}}=\frac{1}{3}({\frac{{\sqrt{3}}}{4}{a^2}})•h=8\sqrt{3}$.
故答案为:$8\sqrt{3}$.

点评 本题考查三棱锥A-BCD的最大体积,考查球的内接几何体,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.从某工厂生产的某产品中抽取500件,测量这些产品的一项质量指标,由测量结果得到下列频数分布表:
指标值分组[75,85)[85,95)[95,105)[105,115)[115,125]
频数3012021010040
(1)作出这些数据的频率分布直方图,并估计该产品质量指标值的平均数$\overline x$及方差s2(同一组中的数据用该组的中点值作代表);
(2)可以认为这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2.近似为样本方差s2; 一件产品的质量指标不小于110时该产品为优质品;利用该正态分布,计算这种产品的优质品率p(结果保留小数点后4位).
(以下数据可供使用:若Z~N(μ,δ2),则P(μ-δ<ξ<μ+δ)=68.26%,P(μ-2δ<ξ<μ+2δ)=95.44%)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知棱长等于$2\sqrt{3}$的正方体ABCD-A1B1C1D1,它的外接球的球心为O,点E是AB的中点,则过点E的平面截球O的截面面积的最小值为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设定点A(3,1),B是x轴上的动点,C是直线y=x上的动点,则△ABC周长的最小值是(  )
A.3$\sqrt{5}$B.$\sqrt{6}$C.2$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出以下四个命题:
①若$\frac{1}{a}$<$\frac{1}{b}$<0,则$\frac{b}{a}$+$\frac{a}{b}$>2;
②若a>b,则am2>bm2
③在△ABC中,若sinA=sinB,则A=B;
④任意x∈R,都有ax2-ax+1≥0,则0<a≤4.
其中是真命题的有(  )
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以A(-2,-2),B(-3,1),C(3,5),D(7,-7)为顶点的四边形是(  )
A.正方形B.矩形C.平行四边形D.梯形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设P为x轴上一点,它与原点及点(5,-3)等距离,则P点的坐标是(3.4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\frac{1}{3}$x3+x2-3x,若方程|f(x)|2+t|f(x)|+1=0有12个不同的根,则实数t的取值范围为(  )
A.(-$\frac{10}{3}$,-2)B.(-∞,-2)C.-$\frac{34}{15}$<t<-2D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.正实数x,y满足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy-34≥0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案