分析 (1)根据正弦定理即可确定出AB的长;
(2)设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,由余弦定理即可得解.
解答 (本题满分为10分)
解:(1)∵在$△ABC中,cosA=\frac{12}{13},cosC=\frac{3}{5}$,
∴$sinA=\frac{5}{13},sinC=\frac{4}{5}$,
∴$sinB=sin(A+C)=sinAcosC+cosCsinA=\frac{63}{65}$,
∴由正弦定理$\frac{AB}{sinC}=\frac{AC}{sinB},AB=\frac{ACsinC}{sinB}=1040米$,
∴索道AB的长为1040m. …(5分)
(2)假设乙出发t分钟后,甲、乙两游客距离为d,
此时,甲行走了(100+50t)m,乙距离A处130t m,
所以由余弦定理得:
d2=(130t)2+2500(t+2)2-2•130t•50(t+2)$\frac{12}{13}$
=200(37t2-70t+50)
=$200[37{(t-\frac{35}{37})^2}+\frac{625}{37}\},t∈[0,8]$,
故$当t=\frac{35}{37}分时,甲乙的距离最短$.…(10分)
点评 此题考查了余弦定理,锐角三角函数定义,以及勾股定理,利用了分类讨论及数形结合的思想,属于解直角三角形题型,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{10}{3}$,-2) | B. | (-∞,-2) | C. | -$\frac{34}{15}$<t<-2 | D. | (-1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{5}$ | C. | $\sqrt{6}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | $\frac{1}{4}$ | D. | -$\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com