精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn , 满足a1= +3.
(1)证明:{an+1}是等比数列;
(2)求数列{an}的前n项和为Sn

【答案】
(1)证明:∵Sn+1=Sn+4an+3,∴an+1=4an+3,变形为:an+1+1=4(an+1),

∴{an+1}是等比数列,首项为 ,公比为4;


(2)解:由(1)可得:an+1= ×4n1,∴an= ﹣1.

∴数列{an}的前n项和为Sn= ﹣n= ﹣n.


【解析】(1)Sn+1=Sn+4an+3,可得an+1=4an+3,变形为:an+1+1=4(an+1),利用等比数列的定义即可证明.(2)由(1)可得:an+1= ×4n1 , 即an= ﹣1.再利用等比数列的前n项和公式即可得出.
【考点精析】认真审题,首先需要了解等比数列的通项公式(及其变式)(通项公式:),还要掌握数列的前n项和(数列{an}的前n项和sn与通项an的关系)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(1)在棱上是否存在一点,使得四点共面?若存在,指出点的位置并说明;若不存在,请说明理由;

(2)求点平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-1:几何证明选讲]
如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心, OA为半径作圆.

(1)证明:直线A与⊙O相切;
(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图的程序框图,运行相应的程序,输出的结果为(

A.﹣2
B.
C.﹣1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为 的半球O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长是(

A.1
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为“常喝”,体重超过为“肥胖”.

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部人中随机抽取人,抽到肥胖的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由;

(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个有关健康饮食的电视节目,求恰好抽到一名男生和一名女生的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,过棱AB的上一点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H

(1)求证:截面EFGH为平行四边形

(2)若P、Q在线段BD、AC上,,且P、F不重合,证明:PQ截面EFGH

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,AD=CD

(1)证明:ACBD

(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数如果满足:对任意存在常数都有成立则称上的有界函数其中称为函数的一个上界已知函数

(1)若函数为奇函数求实数的值;

(2)在(1)的条件下求函数在区间上的所有上界构成的集合;

(3)若函数上是以5为上界的有界函数求实数的取值范围

查看答案和解析>>

同步练习册答案