| A. | $[{-\frac{1}{4},\frac{1}{4}}]$ | B. | [0,$\frac{1}{4}$] | C. | [-2,$\frac{1}{4}$] | D. | [-1,$\frac{1}{4}$] |
分析 由条件根据y=cos2x+sinx-1=-sin2x+sinx=-$(sinx-\frac{1}{2})^{2}$+$\frac{1}{4}$,再利用二次函数的性质求得函数的最值,可得函数的值域.
解答 解:∵函数y=cos2x+sinx-1=-sin2x+sinx=-$(sinx-\frac{1}{2})^{2}$+$\frac{1}{4}$,sinx∈[-1,1],
故当sinx=$\frac{1}{2}$时,函数y取得最大值为$\frac{1}{4}$;当sinx=-1时,函数y取得最小值为-2,
故函数y的值域为[-2,$\frac{1}{4}$].
故选C.
点评 本题主要考查正弦函数的值域,二次函数的性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x2,x∈[0,1] | B. | $f(x)=x(\frac{1}{{{2^x}-1}}+\frac{1}{2})$ | ||
| C. | $f(x)=\left\{\begin{array}{l}x+1,(x>0)\\ \\ x-1.(x<0)\end{array}\right.$ | D. | $f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要条件 | B. | 充要条件 | ||
| C. | 必要非充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{5}$ | B. | $\frac{5}{7}$ | C. | $\frac{4}{5}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com