精英家教网 > 高中数学 > 题目详情
5.函数y=cos2x+sinx-1的值域为(  )
A.$[{-\frac{1}{4},\frac{1}{4}}]$B.[0,$\frac{1}{4}$]C.[-2,$\frac{1}{4}$]D.[-1,$\frac{1}{4}$]

分析 由条件根据y=cos2x+sinx-1=-sin2x+sinx=-$(sinx-\frac{1}{2})^{2}$+$\frac{1}{4}$,再利用二次函数的性质求得函数的最值,可得函数的值域.

解答 解:∵函数y=cos2x+sinx-1=-sin2x+sinx=-$(sinx-\frac{1}{2})^{2}$+$\frac{1}{4}$,sinx∈[-1,1],
故当sinx=$\frac{1}{2}$时,函数y取得最大值为$\frac{1}{4}$;当sinx=-1时,函数y取得最小值为-2,
故函数y的值域为[-2,$\frac{1}{4}$].
故选C.

点评 本题主要考查正弦函数的值域,二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知曲线C:x2=2py(p≠0)与直线x-y-1=0相切,过曲线C的准线上任一点M引曲线C的切线,切点分别为A、B.
(1)求P的值;
(2)求△MAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x,y满足$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤2}\\{x+2≥0}\end{array}\right.$,则z=2x+y的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若xlog32=1,则2x+2-x=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数为偶函数的是(  )
A.y=x2,x∈[0,1]B.$f(x)=x(\frac{1}{{{2^x}-1}}+\frac{1}{2})$
C.$f(x)=\left\{\begin{array}{l}x+1,(x>0)\\ \\ x-1.(x<0)\end{array}\right.$D.$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x为实数,则“$\frac{1}{x}<1$”是“x>1”的(  )
A.充分非必要条件B.充要条件
C.必要非充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(log2x)的定义域为[1,4],则f(x)的定义域为(  )
A.[2,16]B.[1,2]C.[0,8]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若存在实数m,n使函数f(x)=$\sqrt{x+3}$+k的定义域为[m,n],值域为[-n,-m],则实数k的取值范围是[2,$\frac{9}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|=10,|AF|=6,cos∠FAB=$\frac{3}{5}$,则C的离心率为(  )
A.$\frac{7}{5}$B.$\frac{5}{7}$C.$\frac{4}{5}$D.$\frac{6}{7}$

查看答案和解析>>

同步练习册答案