已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则( )
A.当k=1时,f(x)在x=1处取到极小值
B.当k=1时,f(x)在x=1处取到极大值
C.当k=2时,f(x)在x=1处取到极小值
D.当k=2时,f(x)在x=1处取到极大值
C
[解析] 本题考查函数零点的判断及函数的极值.
①当k=1时,f(x)=(ex-1)(x-1),此时f ′(x)=ex(x-1)+(ex-1)=ex·x-1,∴A、B项均错.
②当k=2时,f(x)=(ex-1)(x-1)2
此时f ′(x)=ex(x-1)2+(2x-2)(ex-1)
=ex·x2-2x-ex+2=ex(x+1)(x-1)-2(x-1)
=(x-1)[ex(x+1)-2],
易知g(x)=ex(x+1)-2的零点介于0,1之间,不妨设为x0,则有
| x | (-∞,x0) | x0 | (x0,1) | 1 | (1,+∞) |
| f ′(x) | + | 0 | - | 0 | + |
| f(x) | | 极大值 | ↘ | 极小值 | |
科目:高中数学 来源: 题型:
设函数f(x)=ax-
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求a,b的值;
(2)讨论f(x)的单调性,并求f(x)的极大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
设f(x)=-
x3+
x2+2ax.
(1)若f(x)在(
,+∞)上存在单调递增区间,求a的取值范围.
(2)当0<a<2时,f(x)在[1,4]上的最小值为-
,求f(x)在该区间上的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com