精英家教网 > 高中数学 > 题目详情
13.某密码锁共设四个数位,每个数位的数字都可以是1,2,3,4中的任一个.现密码破译者得知:甲所设的四个数字有且仅有三个相同;乙所设的四个数字有两个相同,另两个也相同;丙所设的四个数字有且仅有两个相同;丁所设的四个数字互不相同.则上述四人所设密码最安全的是(  )
A.B.C.D.

分析 分别求出甲、乙、丙、丁四人密码被破译的概率,由此能求出四人所设密码最安全的是丙.

解答 解:甲密码被破译的概率P1=1-$\frac{{C}_{4}^{1}}{{4}^{4}}$=1$\frac{4}{{4}^{4}}$,
乙密码被破译的概率P2=1-$\frac{{C}_{4}^{1}{C}_{3}^{1}{A}_{2}^{2}}{{4}^{4}}$=1-$\frac{24}{{4}^{4}}$,
丙密码被破译的概率P3=1-$\frac{{C}_{4}^{1}{C}_{3}^{2}{A}_{3}^{3}}{{4}^{4}}$=1-$\frac{72}{{4}^{4}}$,
丁密码被破译的概率P4=1-$\frac{{A}_{4}^{4}}{{4}^{4}}$=1-$\frac{24}{{4}^{4}}$,
∵P3最小,∴四人所设密码最安全的是丙.
故选:C.

点评 本题考查概率的求法及应用,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设等差数列{an}的前n项和为Sn,若a5=3,S10=40,则nSn的最小值为-32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}-{2^x},x<2\\{log_3}({x^2}-1),x≥2\end{array}$,若f(a)=1,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若随机变量X服从正态分布N(4,1),则P(x>6)的值为(  )(参考数据:若随机变量X~N(μ,σ2),则P(μ-σ<x<μ+σ)=0.6826,P(μ-2σ<x<μ+2σ)=0.9544,P(μ-3σ<x<μ+3σ)=0.9974)
A.0.1587B.0.0228C.0.0013D.0.4972

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l的参数方程是$\left\{\begin{array}{l}x=1+0.8t\\ y=2+0.6t\end{array}\right.$(t为参数),则它的普通方程是3x-4y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cosα\\ y=sinα\end{array}\right.$(α为参数);在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.
(Ⅰ)求C1的普通方程和C2的直角坐标方程;
(Ⅱ)若射线l:y=kx(x≥0)分别交C1,C2于A,B两点(A,B异于原点).当$k∈(1,\sqrt{3}]$时,求|OA|•|OB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,∠BAC=120°,AC=4,BC=2$\sqrt{7}$,则△ABC的面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过(  )
A.6粒B.7粒C.8粒D.9粒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=x2+3x,若|x-a|≤1,则下列不等式一定成立的是(  )
A.|f(x)-f(a)|≤3|a|+3B.|f(x)-f(a)|≤2|a|+4C.|f(x)-f(a)|≤|a|+5D.|f(x)-f(a)|≤2(|a|+1)2

查看答案和解析>>

同步练习册答案