精英家教网 > 高中数学 > 题目详情

【题目】如图1,在直角梯形中,,将沿折起,使平面平面,得到几何体,如图2所示,

(1)求证:平面

(2)求几何体的体积.

【答案】(1)见解析;(2)

【解析】

(1)由题中数量关系和勾股定理,得出AC⊥BC,再证BC垂直与平面ACD中的一条直线即可,△ADC是等腰Rt△,底边上的中线OD垂直底边,由面面垂直的性质得OD⊥平面ABC,所以OD⊥BC,从而证得BC⊥平面ACD;

(2)由高和底面积,求得三棱锥B﹣ACD的体积即是几何体D﹣ABC的体积.

(1)在图1中,△ADC是等腰Rt△,且,可得

中由余弦定理可得

从而,故

中点连结,则,又面

,且,从而平面

,又,∴平面.

(2) 由(1)可知为三棱锥的高,,得

所以

由等体积性可知几何体的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,将宽和长都分别为x的两个矩形部分重叠放在一起后形成的正十字形面积为注:正十字形指的是原来的两个矩形的顶点都在同一个圆上,且两矩形长所在的直线互相垂直的图形

y关于x的函数解析式;

xy取何值时,该正十字形的外接圆面积最小,并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,点是函数图像的相邻的两个对称中心,且函数在区间内单调递减,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程;

(2)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,四边形是矩形, ,平面平面.

(1)证明:

(2)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中, 台体体积公式: 其中分别为台体上、下底面面积, 为台体高.

1)证明:直线 平面

2)若, ,三棱锥的体积,求 该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn,已知an>0,an2+2an=4Sn+3.

(1)求a1的值;

(2)求{an}的通项公式:

(3)设bn=,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段……后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:

1)求出物理成绩低于50分的学生人数;

2)估计这次考试物理学科及格率(60分以上为及格);

3)从物理成绩不及格的学生中选x人,其中恰有一位成绩不低于50分的概率为,求此时x的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 经过椭圆 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆 两点,且).

(1)求椭圆的方程;

(2)当三角形的面积取得最大值时,求直线的方程.

查看答案和解析>>

同步练习册答案