精英家教网 > 高中数学 > 题目详情

【题目】数列{an}的前n项和为Sn,已知an>0,an2+2an=4Sn+3.

(1)求a1的值;

(2)求{an}的通项公式:

(3)设bn=,求数列{bn}的前n项和.

【答案】(1)3(2)an=2n+1.(3)

【解答】解:(1)令n=1可得:a12+2a1=4a1+3,解得a1=3或a1=﹣1(舍).

(2)∵an2+2an=4Sn+3,∴an12+2an1=4Sn1+3(n≥2),

两式相减得:an2﹣an12+2(an﹣an1)=4an,即(an﹣an1)(an+an1)=2(an+an1),

∴an﹣an1=2,

∴{an}是以3为首项,以2为公差的等差数列,

∴an=3+2(n﹣1)=2n+1.

(3)bn==),

数列{bn}的前n项和++…+)=)=

【解析】

试题分析:(1)令n=1可解得a1的值;(2)利用和项与通项关系得递推关系式an﹣an﹣1=2,再根据等差数列定义及通项公式可得结论(3)因为 ,所以利用裂项相消法求数列{bn}的前n项和.

试题解析:解:(1)令n=1可得:a12+2a1=4a1+3,解得a1=3或a1=﹣1(舍).

2)∵an2+2an=4Sn+3,∴an12+2an1=4Sn1+3n≥2),

两式相减得:an2an12+2anan1=4an,即(anan1)(an+an1=2an+an1),

anan1=2

{an}是以3为首项,以2为公差的等差数列,

an=3+2n1=2n+1

3bn==),

数列{bn}的前n项和++…+==

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,当时,,则不等式的解集为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[4050),[5060),[6070),[7080),[8090),[90100]

1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;

2)从评分在[4060)的问卷者中,随机抽取2人,求此2人评分都在[5060)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,,将沿折起,使平面平面,得到几何体,如图2所示,

(1)求证:平面

(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,且,当时,.

1)求

2)证明函数上单调递增;

3)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数是奇函数.

1)求实数ab的值;

2)若对任意实数x,不等式f4xk2x+f22x+1k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形为平行四边形,  平面,且的中点.

1)求证: 平面

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图 所示,一条直角走廊宽为

1)若位于水平地面上的一根铁棒在此直角走廊内,且,试求铁棒的长

2)若一根铁棒能水平地通过此直角走廊,求此铁棒的最大长度;

3)现有一辆转动灵活的平板车,其平板面是矩形,它的宽如图2.平板车若想顺利通过直角走廊,其长度不能超过多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,焦距为 2,一条准线方程为为椭圆上一点,直线交椭圆于另一点.

(1)求椭圆的方程;

(2)若点的坐标为,求过三点的圆的方程;

(3)若,且,求的最大值.

查看答案和解析>>

同步练习册答案