【题目】函数的定义域为,且,当时, ,.
(1)求和;
(2)证明函数在上单调递增;
(3)求不等式的解集.
【答案】(1)f(1)=0,f(9)=2(2)证明见解析(3)(8,9)
【解析】
(1)赋值法求和,令,求出;再令,结合已知,可求,再令,即可求解;
(2)设,由结合已知,可证,即可得出结论;
(3)由(1)结合已知,不等式可化为,根据函数的单调性和定义域,转化为关于的不等式组,即可求出结论.
(1)令x=y=1,则f(1)=f(1)+f(1),即f(1)=0,
令x=3,y,则f(3)=f(3)+f()=f(1)=0,
即,则,
令x=3,y=3得.
(2)设,则,则,
则f(x1)=f(x2)=f(x2)+f()>f(x2),
即函数f(x)在(0,+∞)上为增函数.
(3)不等式f(x)+f(x﹣8)<2等价为,
则等价为,得得8<x<9,
即不等式的解集为(8,9).
科目:高中数学 来源: 题型:
【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量(百斤)与使用某种液体肥料(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,是否可用线性回归模型拟合与的关系?请计算相关系数并加以说明(精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)
(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:
周光照量(单位:小时) | |||
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.
附:相关系数公式,参考数据,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出定义:若(其中m为整数),则m叫做与实数x”亲密的整数”记作{x}=m,在此基础上给出下列关于函数的四个说法:
①函数在是增函数;
②函数的图象关于直线对称;
③函数在上单调递增
④当时,函数有两个零点,
其中说法正确的序号是( )
A.①②③B.②③④C.①②④D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和为Sn,已知an>0,an2+2an=4Sn+3.
(1)求a1的值;
(2)求{an}的通项公式:
(3)设bn=,求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某市效外景区内一条笔直的公路经过三个景点A、B、C.景区管委会又开发了风景优美的景点D.经测量景点D位于景点A的北偏东30°方向且距A 8 km处,且位于景点B的正北方向,还位于景点C的北偏西75°方向 上,已知AB=5 km,AD>BD.
(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长;
(2)求∠ACD的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某“” 型水渠南北向宽为,东西向宽为,其俯视图如图所示.假设水渠内的水面始终保持水平位置.
(1) 过点的一条直线与水渠的内壁交于两点,且与水渠的一边的夹角为(为锐角),将线段的长度表示为的函数;
(2) 若从南面漂来一根长度为的笔直的竹竿(粗细不计),竹竿始终浮于水平面内,且不发生形变,问:这根竹竿能否从拐角处一直漂向东西向的水渠(不会卡住)?试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com