精英家教网 > 高中数学 > 题目详情
7.在三角形ABC中,已知sinC=2sin(B+C)cosB,那么三角形ABC一定是(  )三角形.
A.等腰直角B.等腰C.直角D.等边

分析 由内角和是π,据诱导公式消去C,再由两角和与差的公式变换整理,观察整理的结果判断出△ABC一定是等腰三角形.

解答 解:∵sinC=2sin(B+C)cosB,
∴sin(A+B)=2sinAcosB,
∴sinAcosB+cosAsinB=2sinAcosB,
∴sinAcosB-cosAsinB=0
∴sin(A-B)=0
∴A-B=0,即A=B
故△ABC一定是等腰三角形,
故选B.

点评 本题考查三角函数的两角与差的正弦公式,利用此公式变换出A-B=0.从本题的变换中可以体会出三角变换的灵活性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知ABCD是矩形,AD=2AB,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(1)求证:DF⊥平面PAF;
(2)若在棱PA上存在一点G,使得EG∥平面PFD,求$\frac{AG}{AP}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow m$=(sin x,$\sqrt{3}$sinx),$\overrightarrow n$=(sinx,-cosx),设函数$f(x)=\overrightarrow m•\overrightarrow n$,若函数g(x)=-f(-x).
(Ⅰ)求函数g(x)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最大值,并求出此时x的取值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若f($\frac{A}{2}$-$\frac{π}{12}$)+g($\frac{π}{12}$+$\frac{A}{2}$)=-$\sqrt{3}$,b+c=7,bc=8,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称为入肺颗粒物),为了探究车流量与PM2.5的浓度失分相关,现采集某城市周一至周五时间段车流量与PM2.5的数据如表”
 时间 周一周二 周三  周四 周五
 车流量x(万辆) 50 51 54 57 58
 PM2.5的浓度y(微克/立方米) 69 70 74 7879
(Ⅰ)根据如表数据,请在坐标系中画出散点图;
(Ⅱ)根据表格中数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅲ)若周六同一时间段车流量是30万辆,试根据(Ⅱ)求出的线性回归方程预测此时PM2.5的浓度为多少(保留整数)?
(相关公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知z0=2+2i,|z-z0|=$\sqrt{2}$,
(1)求复数z在复平面内对应的点的轨迹方程,并说明它是什么曲线.
(2)求z为何值时,|z|有最大、最小值,并求出|z|有最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)=ex,0<a<b,若p=f($\sqrt{ab}$),q=f($\frac{a+b}{2}$),$r=\sqrt{f(a)f(b)}$,则下列关系式中正确的是(  )
A.q=r>pB.q=r<pC.p=r>qD.p=r<q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的通项公式${a_n}={log_2}\frac{n}{n+1}(n∈{N^*})$,设其前n项和为Sn,则使Sn>-4成立的自然数n有(  )
A.最大值14B.最小值14C.最大值15D.最小值15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=sin($\frac{π}{2}$+x)+cos($\frac{π}{2}$-x),x∈[0,π],当x=$\frac{π}{4}$时,f(x)取到最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若不等式x2+px+q<0的解集是{x|1<x<2}.
(1)求p、q的值;
(2)求不等式$\frac{{{x^2}+px+q}}{{{x^2}-x-6}}$≥0的解集.

查看答案和解析>>

同步练习册答案