分析 (1)先由条件证得 AF⊥FD、PA⊥FD.再根据直线和平面垂直的判定定理证得DF⊥平面PAF.
(2)过点E,作EH∥FD,交AD于点H,再过H作HG∥PD交PA于G,可得平面EHG∥平面PFD,从而证得EG∥平面PFD.由条件求得$\frac{AG}{AP}$的值.
解答
(本题满分为12分)
解:(1)在矩形ABCD中,因为AD=2AB,点F是BC的中点,所以∠AFB=∠DFC=45°.
所以∠AFD=90°,即AF⊥DF.…(3分)
又PA⊥平面ABCD,
所以PA⊥DF,
所以DF⊥平面PAF.…(6分)
(2)过E作EH∥FD交AD于H,
则EH∥平面PFD,且AH=$\frac{1}{4}$AD.
再过H作HG∥PD交PA于G,…(8分)
所以GH∥平面PFD,且AG=$\frac{1}{4}$PA.
所以平面EHG∥平面PFD,…(10分)
所以EG∥平面PFD,从而点G满足$\frac{AG}{AP}=\frac{1}{4}$.…(12分)
点评 本题主要考查直线和平面垂直的判定定理、性质定理的应用,考查了空间想象能力和推理论证能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{π}{4})$ | B. | $(\frac{π}{4},\frac{π}{2})$ | C. | $(0,\frac{π}{2})$ | D. | $(\frac{π}{2},π)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | -$\frac{3}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com