精英家教网 > 高中数学 > 题目详情
5.如图1,在矩形ABCD中,点E为边AD上靠近D的三等分点,点F为边CD的中点,AB=AE=4,现将△ABE沿BE边折至△PBE位置,且平面PBE⊥平面BCDE.
(Ⅰ)求证:平面PBE⊥平面PEF;
(Ⅱ)求四棱锥P-BCFE的体积.

分析 (1)利用折叠前的图形可判断BE⊥EF,由面面垂直的性质可得EF⊥平面PBE,再由线面垂直得面面垂直;
(2)过P做PO⊥BE,由面面垂直的性质及线面垂直的判定得到PO⊥平面BCDE,即PO为四棱锥P-BCFE的高.把S四边形BCFE转化为S矩形ABCD-S△ABE-S△DEF,求值后代入棱锥的体积公式得答案.

解答 (1)证明:∵点E为边AD上靠近D的三等分点,点F为边CD的中点,AB=AE=4,
∴$AB=AE=\frac{2}{3}AD=4$,
∴DE=$\frac{1}{3}$AD=$\frac{1}{2}$AB=2,
∵F为CD边的中点,
∴DE=DF,又DE⊥DF,
∴∠DEF=45°,
同理∠AEB=45°,
∴∠BEF=45°,即EF⊥BE,
又平面ABE⊥平面BCDE,平面ABE∩平面BCDE=BE,
∴EF⊥平面PBE,
EF?平面PEF,
∴平面PBE⊥平面PEF;如图,
在Rt△DEF中,∵ED=DF,∴∠DEF=45°.
在Rt△ABE中,∵AE=AB,∴∠AEB=45°,
∴∠BEF=90°,则EF⊥BE.
∵平面PBE⊥平面BCDE,且平面PBE∩平面BCDE=BE,
∴EF⊥平面PBE,
∵EF?平面PEF,∴平面PBE⊥平面PEF;
(2)解:过P做PO⊥BE,
∵PO?平面PBE,平面PBE⊥平面BCDE且平面PBE∩平面BCDE=BE,
∴PO⊥平面BCDE,
四棱锥P-BCFE的高h=PO=$2\sqrt{2}$.
S四边形BCFE=S矩形ABCD-S△ABE$-{S}_{△DEF}=6×4-\frac{1}{2}×4×4-\frac{1}{2}×2×2=14$,
则${V}_{P-BCFE}=\frac{1}{3}{S}_{四边形BCFE}•h$=$\frac{1}{3}×14×2\sqrt{2}=\frac{28\sqrt{2}}{3}$.

点评 本题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知A(-2,3,4),在y轴上求一点B,使|AB|=3$\sqrt{5}$,则点B的坐标为(0,8,0)或(0,2,0) .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$sin(\frac{π}{6}-α)=\frac{4}{5},cos(α+\frac{π}{3})$的值是(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数y=ax-b+1的图象恒过定点(1,2),则b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的摆放规律刺绣,设第n个图形包含an个小正方形.
(1)求出a5的值;
(2)利用归纳推理归纳出an+1与an之间的关系式,并根据你得到的关系式求出an的表达式;
(3)求$\frac{1}{a_1}+\frac{1}{{{a_2}-1}}+…+\frac{1}{{{a_n}-1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果输入n=2,那么执行图中算法后的输出结果是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知ABCD是矩形,AD=2AB,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(1)求证:DF⊥平面PAF;
(2)若在棱PA上存在一点G,使得EG∥平面PFD,求$\frac{AG}{AP}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某小说网站为了了解读者群对网络小说的阅读情况,随机抽取了100名读者进行调查,具体情况如表:
 日均阅读小说时间(分钟) (0,30](30,60] (60,90](90,120] (120,150](150,+∞) 
 人数15  2124  28 4
将日均阅读小说高于1.5个小时的读者称为“小说迷”.
(1)根据已知条件完成下面的2×2列联表,根据此资料,你是否有90%的把握认为“小说迷”与性别有关?
  非小说迷小说迷 合计
 男  1548 
 女   
 合计   
(2)将上述调查所得到的频率视为概率,从该网站的读者(数量很大)中抽取3人,记被抽取的3人中的“小说迷”人数为X,若每次抽取结果是相互独立的,求X的分布列和期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 P(K2≥k0 0.500.25  0.10 0.050.025  0.0100.005  0.001
 k0 0.455 1.3232.706 3.841  5.0246.635  7.87910.828 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称为入肺颗粒物),为了探究车流量与PM2.5的浓度失分相关,现采集某城市周一至周五时间段车流量与PM2.5的数据如表”
 时间 周一周二 周三  周四 周五
 车流量x(万辆) 50 51 54 57 58
 PM2.5的浓度y(微克/立方米) 69 70 74 7879
(Ⅰ)根据如表数据,请在坐标系中画出散点图;
(Ⅱ)根据表格中数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅲ)若周六同一时间段车流量是30万辆,试根据(Ⅱ)求出的线性回归方程预测此时PM2.5的浓度为多少(保留整数)?
(相关公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

同步练习册答案