精英家教网 > 高中数学 > 题目详情
6.若函数f(x)=2|x|-1,则函数g(x)=f(f(x))+ex的零点的个数是(  )
A.1B.2C.3D.4

分析 去掉绝对值符号,化简函数,即可得出结论.

解答 解:x≥0,f(x)=2x-1,g(x)=4x-3+ex,此时有一个零点;
x<0,f(x)=-2x-1,g(x)=4x+1+ex,此时有两个零点;
∴函数g(x)=f(f(x))+ex的零点的个数是3.
故选:C.

点评 本题考查了函数零点的概念与零点定理的应用,函数零点附近函数值的符号相反,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知$sin(\frac{π}{6}-α)=\frac{4}{5},cos(α+\frac{π}{3})$的值是(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知ABCD是矩形,AD=2AB,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(1)求证:DF⊥平面PAF;
(2)若在棱PA上存在一点G,使得EG∥平面PFD,求$\frac{AG}{AP}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某小说网站为了了解读者群对网络小说的阅读情况,随机抽取了100名读者进行调查,具体情况如表:
 日均阅读小说时间(分钟) (0,30](30,60] (60,90](90,120] (120,150](150,+∞) 
 人数15  2124  28 4
将日均阅读小说高于1.5个小时的读者称为“小说迷”.
(1)根据已知条件完成下面的2×2列联表,根据此资料,你是否有90%的把握认为“小说迷”与性别有关?
  非小说迷小说迷 合计
 男  1548 
 女   
 合计   
(2)将上述调查所得到的频率视为概率,从该网站的读者(数量很大)中抽取3人,记被抽取的3人中的“小说迷”人数为X,若每次抽取结果是相互独立的,求X的分布列和期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 P(K2≥k0 0.500.25  0.10 0.050.025  0.0100.005  0.001
 k0 0.455 1.3232.706 3.841  5.0246.635  7.87910.828 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设点集M={(x,y)|xcosθ+ysinθ-sinθ-1=0(0≤θ≤2π)},集合M在坐标平面xoy内形成区域的边界构成曲线C,则C的方程为x2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知tanα=$\frac{1}{2}$,π<α<$\frac{3π}{2}$,则cosα-sinα=(  )
A.-$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{5}$D.-$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow m$=(sin x,$\sqrt{3}$sinx),$\overrightarrow n$=(sinx,-cosx),设函数$f(x)=\overrightarrow m•\overrightarrow n$,若函数g(x)=-f(-x).
(Ⅰ)求函数g(x)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最大值,并求出此时x的取值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若f($\frac{A}{2}$-$\frac{π}{12}$)+g($\frac{π}{12}$+$\frac{A}{2}$)=-$\sqrt{3}$,b+c=7,bc=8,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称为入肺颗粒物),为了探究车流量与PM2.5的浓度失分相关,现采集某城市周一至周五时间段车流量与PM2.5的数据如表”
 时间 周一周二 周三  周四 周五
 车流量x(万辆) 50 51 54 57 58
 PM2.5的浓度y(微克/立方米) 69 70 74 7879
(Ⅰ)根据如表数据,请在坐标系中画出散点图;
(Ⅱ)根据表格中数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅲ)若周六同一时间段车流量是30万辆,试根据(Ⅱ)求出的线性回归方程预测此时PM2.5的浓度为多少(保留整数)?
(相关公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=sin($\frac{π}{2}$+x)+cos($\frac{π}{2}$-x),x∈[0,π],当x=$\frac{π}{4}$时,f(x)取到最大值为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案