分析 a1=3,an-anan+1=1,可得a1-a1a2=1,解得a2=$\frac{2}{3}$,同理可得:a3=-$\frac{1}{2}$,a4=3,因此an+3=a3,a1a2a3=-1.利用其周期性即可得出.
解答 解:∵a1=3,an-anan+1=1,
∴a1-a1a2=1,解得a2=$\frac{2}{3}$,
同理可得:a3=-$\frac{1}{2}$,a4=3,
∴an+3=a3,a1a2a3=-1.
∴A2010=A670×3=$({a}_{1}{a}_{2}{a}_{3})^{670}$=(-1)670=1.
故答案为:1.
点评 本题考查了递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{18}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数$f(x)=\frac{{{x^2}-x}}{x-1}$是奇函数 | |
| B. | 函数$f(x)=(1-x)\sqrt{\frac{1+x}{1-x}}$是偶函数 | |
| C. | 函数$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数 | |
| D. | 函数$y=\frac{{\sqrt{9-{x^2}}}}{{|{x+4}|+|{x+3}|}}$的图象关于y轴对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{15}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com