精英家教网 > 高中数学 > 题目详情
13.A、B、O是抛物线E:y2=2px(p>0)上不同三点,其中O是坐标原点,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,直线AB交x轴于C点,D是线段OC的中点,以E上一点M为圆心、以|MD|为半径的圆被y轴截得的弦长为d,下列结论正确的是(  )
A.d>|OC|>2pB.d<|OC|<2pC.d=|OC|=2pD.d<|OC|=2p

分析 设直线OA的方程为y=kx(k≠1,0),可得直线OB的方程为:y=-$\frac{1}{k}$x,直线方程分别与抛物线方程联立可得A,B的坐标.由直线AB的方程可得C(2p,0),D(p,0).设M(x0,y0),可得d=2$\sqrt{M{D}^{2}-{x}_{0}^{2}}$,即可得出结论.

解答 解:设直线OA的方程为y=kx(k≠1,0),则直线OB的方程为:y=-$\frac{1}{k}$x,
联立$\left\{\begin{array}{l}{y=kx}\\{{y}^{2}=2px}\end{array}\right.$,解得A$(\frac{2p}{{k}^{2}},\frac{2p}{k})$,同理可得B(2pk2,-2pk).
∴直线AB的方程为:y+2pk=$\frac{\frac{2p}{k}+2pk}{\frac{2p}{{k}^{2}}-2p{k}^{2}}$(x-2pk2),化为:y+2pk=$\frac{k}{1-{k}^{2}}$(x-2pk2),令y=0,解得x=2p,
∴C(2p,0),|OC|=2p.
D(p,0).
设M(x0,y0),
则d=2$\sqrt{M{D}^{2}-{x}_{0}^{2}}$=2$\sqrt{({x}_{0}-p)^{2}+{y}_{0}^{2}-{x}_{0}^{2}}$=2p.
综上可得:d=|OC|=2p.
故选:C.

点评 本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题、直线与圆相交弦长问题、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx,g(x)=x-2.
(1)设h(x)=f(x)-g(x),求h(x)的单调区间;
(2)设m∈Z,当x>1时,不等式m•g(x+1)-x•f(x)<x,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知O是坐标系的原点,F是抛物线C:x2=4y的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.
(Ⅰ)求动点G的轨迹方程;
(Ⅱ)设(Ⅰ)中的轨迹与y轴的交点为D,当直线AB与x轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为(  )
A.48B.32C.16D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图,则该几何体的体积是(  )
A.B.C.12πD.14π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,c是实数且a≠0,则“-$\frac{b}{a}$>0且$\frac{c}{a}>0$”是“方程ax2+bx+c=0有两正根”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α终边上一点P(-3,4),求:
(1)sinα和cosα的值
(2)$\frac{{cos(\frac{π}{2}+α)-sin(-π-α)}}{{cos(\frac{11π}{2}-α)+sin(\frac{9π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从1、2、3、4、5五个数字中任选两个组成多少个没有重复数字的两位数(  )
A.45B.90C.20D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:
总计
爱好402060
不爱好203050
总计6050110
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$得,K2=$\frac{110(40×30-20×20)^2}{60×50×60×50}$≈7.8
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别有关”
B.有99%以上的把握认为“爱好运动与性别有关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别无关”
D.有99%以上的把握认为“爱好运动与性别无关”

查看答案和解析>>

同步练习册答案