精英家教网 > 高中数学 > 题目详情
3.通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:
总计
爱好402060
不爱好203050
总计6050110
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$得,K2=$\frac{110(40×30-20×20)^2}{60×50×60×50}$≈7.8
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别有关”
B.有99%以上的把握认为“爱好运动与性别有关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别无关”
D.有99%以上的把握认为“爱好运动与性别无关”

分析 通过所给的观测值,同临界值表中的数据进行比较,发现7.822>6.635,得到结论.

解答 解:∵由一个2×2列联表中的数据计算得K2的观测值k≈7.822,
则7.822>6.635,
∴有99%以上的把握认为“爱好该项运动与性别有关”,
故选:B.

点评 本题考查独立性检验,考查判断两个变量之间有没有关系,一般题目需要自己做出观测值,再拿着观测值同临界值进行比较,得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.A、B、O是抛物线E:y2=2px(p>0)上不同三点,其中O是坐标原点,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,直线AB交x轴于C点,D是线段OC的中点,以E上一点M为圆心、以|MD|为半径的圆被y轴截得的弦长为d,下列结论正确的是(  )
A.d>|OC|>2pB.d<|OC|<2pC.d=|OC|=2pD.d<|OC|=2p

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用a,b,c分别表示△ABC的三个内角A,B,C所对边的边长,R表示△ABC的外接圆半径.
(1)R=2,a=2,B=45°,求AB的长;
(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2
(3)给定三个正实数a,b,R,其中b≤a,问a,b,R满足怎样的关系时,以a,b为边长,R为外接圆半径的△ABC不存在,存在一个或存在两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a,b,R表示c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线y2=2px(p>0)的焦点为F,直线y=-3与抛物线交于点M,|MF|=5,则抛物线的标准方程是(  )
A.y2=2xB.y2=18xC.y2=xD.y2=2x或y2=18x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A是抛物线y2=4x的对称轴与准线的交点,点B是其焦点,点P在该抛物线上,且满足|PA|=m|PB|,当m取得最大值时,点P恰在以A,B为焦点的双曲线上,则双曲线的实轴长为(  )
A.$\sqrt{2}$-1B.2$\sqrt{2}$-2C.$\sqrt{2}$+1D.2$\sqrt{2}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.300°用弧度制可表示为$\frac{5π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=cos(sinx),则下列结论正确的是(  )
A.它是奇函数B.值域为[cos1,1]C.它不是周期函数D.定义域为[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.有A,B,C三个城市,上午从A城去B城有5班汽车,2班火车,都能在12:00前到达B城,下午从B城去C城有3班汽车,2班轮船.某人上午从A城出发去B城,要求12:00前到达,然后他下午去C城,问有多少种不同的走法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),M,N是双曲线上关于原点对称的两点,P是双曲线上的动点,直线PM,PN的斜率分别为k1,k2(k1•k2≠0),若|k1|+|k2|的最小值为1,则双曲线的离心率为$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

同步练习册答案