精英家教网 > 高中数学 > 题目详情
15.已知函数y=cos(sinx),则下列结论正确的是(  )
A.它是奇函数B.值域为[cos1,1]C.它不是周期函数D.定义域为[-1,1]

分析 根据三角函数奇偶性,单调性,周期性和值域的性质分别进行判断即可.

解答 解:函数的定义域为(-∞,+∞),故D错误,
f(-x)=cos(sin(-x))=cos(sinx)=f(x),则函数f(x)是偶函数,故A错误,
∵-1≤sinx≤1,∴cos1≤x≤1,即函数的值域为[cos1,1],故B正确,
∵f(x+2π)=cos(sin(x+2π))=cos(sinx)=f(x),
∴x=2π是函数f(x)的一个周期,故函数是周期函数,故C错误,
故选:B

点评 本题主要考查命题的真假判断,涉及三角函数的奇偶性,定义域,值域,周期性的判断,利用相应的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知角α终边上一点P(-3,4),求:
(1)sinα和cosα的值
(2)$\frac{{cos(\frac{π}{2}+α)-sin(-π-α)}}{{cos(\frac{11π}{2}-α)+sin(\frac{9π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)和g(x)满足f(x)=$\frac{{f}^{′}(1)}{2}$•e2x-2+x2-2f(0)x,且g′(x)+2g(x)<0,则下列不等式成立的是(  )
A.f(2)g(2015)<g(2017)B.f(2)g(2015)>g(2017)C.g(2015)<f(2)g(2017)D.g(2015)>f(2)g(2017)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:
总计
爱好402060
不爱好203050
总计6050110
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$得,K2=$\frac{110(40×30-20×20)^2}{60×50×60×50}$≈7.8
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别有关”
B.有99%以上的把握认为“爱好运动与性别有关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别无关”
D.有99%以上的把握认为“爱好运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若sinθ=$\frac{1}{3}$,则cos($\frac{3π}{2}$-θ)=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:x2=4y,F为抛物线C的焦点,设P为直线l:x-y-2=0上的点,过点P作抛物线C的两条切线PA,PB.
(1)在直线l上取点P(4,2),求直线AB的方程;
(2)当点P在直线l上移动时,求|AF|+|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的正视图和侧视图都是如图所示的直角边长a的等腰直角三角形,则该几何体的体积不可能是(  )
A.$\frac{{a}^{3}}{6}$B.$\frac{{a}^{3}}{3}$C.$\frac{{a}^{3}}{2}$D.$\frac{π{a}^{3}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x∈R||x-2|<3},Z为整数集,则集合A∩Z中所有元素的和等于10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设向量$\overrightarrow{a}$,$\overrightarrow b$不共线,向量λ$\overrightarrow a$+$\overrightarrow b$与2$\overrightarrow a$+λ$\overrightarrow b$平行,则实数λ=$±\sqrt{2}$.

查看答案和解析>>

同步练习册答案