【题目】已知
是抛物线
上的两个点,点
的坐标为
,直线
的斜率为
.设抛物线
的焦点在直线
的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且
,过
两点分别作W的切线,记两切线的交点为
. 判断四边形
是否为梯形,并说明理由.
【答案】(Ⅰ)
;(2)四边形
不可能为梯形,理由详见解析.
【解析】试题分析:(Ⅰ)(Ⅰ)直线
过点
,且斜率为k,所以直线方程可设为
,若焦点
在直线
的下方,则满足不等式
,代入求
的范围;(Ⅱ)设直线
的方程为
,
,分别与抛物线
联立,因为直线和抛物线的一个交点坐标
已知,故可利用韦达定理求出切点
的横坐标,则可求在
点处的切线斜率,若四边形
是否为梯形,则有得
或
,根据斜率相等列方程,所得方程无解,故四边形
不是梯形.
试题解析:(Ⅰ)解:抛物线
的焦点为
.由题意,得直线
的方程为
,
令
,得
,即直线
与y轴相交于点
.因为抛物线
的焦点在直线
的下方,
所以
,解得
,因为
,所以
.
(Ⅱ)解:结论:四边形
不可能为梯形.理由如下:
假设四边形
为梯形.由题意,设
,
,
,
联立方程
,消去y,得
,由韦达定理,得
,所以
.
同理,得
.对函数
求导,得
,所以抛物线
在点
处的切线
的斜率为
,抛物线
在点
处的切线
的斜率为
.
由四边形
为梯形,得
或
.
若
,则
,即
,因为方程
无解,所以
与
不平行.
若
,则
,即
,因为方程
无解,所以
与
不平行.所以四边形
不是梯形,与假设矛盾.因此四边形
不可能为梯形.
科目:高中数学 来源: 题型:
【题目】已知点
在椭圆
上,
为椭圆
的右焦点,
分别为椭圆
的左,右两个顶点.若过点
且斜率不为0的直线
与椭圆
交于
两点,且线段
的斜率之积为
.
(1)求椭圆
的方程;
(2)已知直线
与
相交于点
,证明:
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程是
(
为参数),以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,且直线
与曲线
交于
两点.
(Ⅰ)求直线
的普通方程及曲线
的直角坐标方程;
(Ⅱ)把直线
与
轴的交点记为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为探索课堂教学改革,江门某中学数学老师用传统教学和“导学案”两种教学方式,在甲、乙两个平行班进行教学实验。为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图。记成绩不低于70分者为“成绩优良”。
![]()
(Ⅰ)请大致判断哪种教学方式的教学效果更佳,并说明理由;
(Ⅱ)构造一个教学方式与成绩优良列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
(附:
,其中
是样本容量)
独立性检验临界值表:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点
到定点
的距离比
到定直线
的距离小1.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)过点
任意作互相垂直的两条直线
,分别交曲线
于点
和
.设线段
,
的中点分别为
,求证:直线
恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在Rt
中,
,点
、
分别在线段
、
上,且
,将
沿
折起到
的位置,使得二面角
的大小为
.
(1)求证:
;
(2)当点
为线段
的靠近
点的三等分点时,求
与平面
所成角
的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的矩形
中,
,点
为
边上异于
,
两点的动点,且
,
为线段
的中点,现沿
将四边形
折起,使得
与
的夹角为
,连接
,
.
![]()
(1)探究:在线段
上是否存在一点
,使得
平面
,若存在,说明点
的位置,若不存在,请说明理由;
(2)求三棱锥
的体积的最大值,并计算此时
的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com