精英家教网 > 高中数学 > 题目详情

【题目】在全社会推行素质教育的大前提下,更强调了学生的全面发展,只有全面重视体育锻炼,才能使学生德智体美全面发展。为了解某高校大学生的体育锻炼情况,做了如下调查统计。该校共有学生10000人,其中男生6000人,女生4000人。为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集200位学生每周平均体育运动时间的样本数据(单位:小时).

(1)应收集多少位女生的样本数据?

(2)根据这200个样本数据,得到学生每周平均体育运动时间的频率分布直方图,其中样本数据的分组区间为:,估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有50位女生的每周平均体育运动时间超过4个小时,请完成每周平均体育运动时间与性别的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“该校学生的每周平均体育运动时间与性别有关”.

女生

男生

总计

每周平均体育运动时间不超过4小时

每周平均体育运动时间超过4小时

总计

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

【答案】(1)应该收集80位女生的样本数据; (2)估计该校学生每周平均体育运动时间超过4小时的概率为0.75;(3)能在犯错误的概率不超过0.01的前提下认为“该校学生的每周体育运动的平均时间与性别有关”.

【解析】

(1)由题意,根据女生所占的比例,列出,即可求解;

(2)根据频率方程直方图中概率的计算,即可求解200位学生每周平均体育运动时间超过4小时的频率;

(3)列出的列联表,利用公式求得的值,根据附表,即可判定.

(1)由题题,得,所以应该收集80位女生的样本数据,

(2)根据频率分布直方图,得200位学生每周平均体育运动时间超过4小时的频率为:

.

因此可估计该校学生每周平均体育运动时间超过4小时的概率为0.75.

(3)列出的列联表,如下:

女生

男生

合计

每周平均体育运动时间不超过4小时

30

20

50

每周平均体育运动时间超过4小时

50

100

150

合计

80

120

200

.

所以能在犯错误的概率不超过0.01的前提下认为“该校学生的每周体育运动的平均时间与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】水稻是人类重要的粮食作物之一,耕种与食用的历史都相当悠久,日前我国南方农户在播种水稻时一般有直播、撒酒两种方式.为比较在两种不同的播种方式下水稻产量的区别,某市红旗农场于2019年选取了200块农田,分成两组,每组100块,进行试验.其中第一组采用直播的方式进行播种,第二组采用撒播的方式进行播种.得到数据如下表:

产量(单位:斤)

播种方式

[840860

[860880

[880,900

[900,920

[920,940

直播

4

8

18

39

31

散播

9

19

22

32

18

约定亩产超过900斤(含900斤)为产量高,否则为产量低

1)请根据以上统计数据估计100块直播农田的平均产量(同一组中的数据用该组区间的中点值为代表)

2)请根据以上统计数据填写下面的2×2列联表,并判断是否有99%的把握认为产量高播种方式有关?

产量高

产量低

合计

直播

散播

合计

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2α4cosα=0.已知直线l的参数方程为为参数),点M的直角坐标为.

1)求直线l和曲线C的普通方程;

2)设直线l与曲线C交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若处取得极值,求实数的值.

(2)求函数的单调区间.

(3)若上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C1yx2(p>0)的焦点与双曲线C2y21的右焦点的连线交C1于第一象限的点M.C1在点M处的切线平行于C2的一条渐近线,则p( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点MN,过点Mx轴的垂线分别与直线OPON交于点AB,其中O为原点.

(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;

(Ⅱ)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为8,其短轴的两个端点与长轴的一个端点构成正三角形。

(1)求的方程;

(2)设的左焦点,为直线上任意一点,过点的垂线交于两点,.

(i)证明:平分线段(其中为坐标原点);

(ii)当取最小值时,求点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点围成的四边形的面积为,其离心率为

(1)求椭圆的方程;

(2)过椭圆的右焦点作直线轴除外)与椭圆交于不同的两点,在轴上是否存在定点,使为定值?若存在,求出定点坐标及定值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间租赁甲、乙两种设备生产AB两类产品,甲种设备每天能生产A类产品8件和B类产品15件,乙种设备每天能生产A类产品10件和B类产品25件,已知设备甲每天的租赁费300元,设备乙每天的租赁费400元,现车间至少要生产A类产品100件,B类产品200件,所需租赁费最少为__

查看答案和解析>>

同步练习册答案