分析 (1)解绝对值不等式|x2-x|≥6,我们可以求出命题p成立时,x的取值范围,再由p且q与非q都是假命题,可得x应满足P假且q真,由此构造关于x的不等式组,解不等式组即可得到x的取值范围;
(2)由绝对值不等式及一元二次不等式的解法,得到p,q的等价命题.又由¬p是¬q的必要而不充分条件的等价命题为:p是q的充分不必要条件,再由判断充要条件的方法,我们可知命题“x∈A”是命题“x∈B”的充分不必要条件,得到A、B的关系,进而得到m的取值范围.
解答 解:(1)∵非q是假,则q是真,
又∵P且q是假∴P假即非P真,
∴|x2-x|<6,且x∈Z,
∴-6<x2-x<6且x∈Z,
即 $\left\{\begin{array}{l}{{x}^{2}-x>-6}\\{{x}^{2}-x<6}\\{x∈Z}\end{array}\right.$,
解之得:$\left\{\begin{array}{l}{-2<x<3}\\{x∈Z}\end{array}\right.$,
∴x=-1,0,1,2;
(2)由题知,若?p是?q的必要不充分条件的等价命题为:p是q的充分不必要条件.
由x2-8x-20≤0,解得-2≤x≤10,
∴p:-2≤x≤10;
由x2-2x+1-m2≤0(m>0),整理得[x-(1-m)][x-(1+m)]≤0
解得 1-m≤x≤1+m,
∴q:1-m≤x≤1+m
又∵p是q的充分不必要条件
∴$\left\{\begin{array}{l}{1-m≤-2}\\{1+m≥10}\end{array}\right.$,∴m≥9,
∴实数m的取值范围是[9,+∞).
点评 本题考查的判断充要条件的方法,但解题的关键是绝对值不等式及一元二次不等式的解法.我们可以根据充要条件的定义进行判断,也可根据命题“x∈A”是命题“x∈B”的充分不必要条件,则A?B.
科目:高中数学 来源:2017届湖南永州市高三高考一模考试数学(文)试卷(解析版) 题型:解答题
已知函数
.
(1)当
时,求函数
在点
处的切线方程;
(2)若不等式
在
时恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3个 | B. | 2个 | C. | 1个 | D. | 0个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {1,2,3,4} | C. | ∅ | D. | {∅} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com