精英家教网 > 高中数学 > 题目详情
16.函数f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)的一部分图象如图所示,则(  )
A.f(x)=3sin(2x-$\frac{π}{6}$)+1B.f(x)=2sin(3x+$\frac{π}{3}$)+2C.f(x)=2sin(3x-$\frac{π}{6}$)+2D.f(x)=2sin(2x+$\frac{π}{6}$)+2

分析 由函数的图象的顶点坐标求出A和b,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.

解答 解:根据函数f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)的一部分图象,
可得2A=4,A=2,b=A=2
再根据$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{5π}{12}$-$\frac{π}{6}$,求得ω=2,
再根据五点法作图可得2•$\frac{5π}{12}$+φ=π,
∴φ=$\frac{π}{6}$,f(x)=2sin(2x+$\frac{π}{6}$)+2,
故选:D.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A和b,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.扇形OAB中,∠AOB=90°,OA=2,其中C是OA的中点,P是$\widehat{AB}$上的动点(含端点),若实数λ,μ满足$\overrightarrow{OP}$=λ$\overrightarrow{OC}$+μ$\overrightarrow{OB}$,则λ+μ的取值范围是(  )
A.[1,$\sqrt{2}$]B.[1,$\sqrt{3}$]C.[1,2]D.[1,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数的解析式;
(2)设$\frac{1}{12}$π<x<$\frac{11}{12}$π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}是等差数列a1=1,a5=13,设Sn为数列{(-1)nan}的前n项和,则S2016=(  )
A.2016B.-2016C.3024D.-3024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.记max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,设M=max{|x-y2+4|,|2y2-x+8|},若对一切实数x,y,M≥m2-2m都成立,则实数m的取值范围是[1-$\sqrt{7}$,1+$\sqrt{7}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点; 命题q:函数y=x2-a在(0,+∞)上是减函数,若p且¬q为真命题,则实数a的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|ax+2a+6<0},B={x|x<0},若B⊆(∁RA),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x∈[0,π],使sinx≥$\frac{1}{2}$的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
其中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为,$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

同步练习册答案