精英家教网 > 高中数学 > 题目详情
5.已知x∈[0,π],使sinx≥$\frac{1}{2}$的概率为$\frac{2}{3}$.

分析 求出满足sinx≥$\frac{1}{2}$的区间宽度,代入几何概型概率计算公式,可得答案.

解答 解:由x∈[0,π],sinx≥$\frac{1}{2}$,可得$\frac{π}{6}$≤x≤$\frac{5π}{6}$,
∴所求概率为P=$\frac{\frac{5π}{6}-\frac{π}{6}}{π}$=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.

点评 本题考查的知识点是几何概型,计算出满足sinx≥$\frac{1}{2}$的区间宽度,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A,B,C的所对边分别为a,b,c,若a2-b2=$\frac{1}{2}$c2,则$\frac{2acosB}{c}$的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)的一部分图象如图所示,则(  )
A.f(x)=3sin(2x-$\frac{π}{6}$)+1B.f(x)=2sin(3x+$\frac{π}{3}$)+2C.f(x)=2sin(3x-$\frac{π}{6}$)+2D.f(x)=2sin(2x+$\frac{π}{6}$)+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过抛物线y2=4x焦点F且倾斜角为60°的直线l在第一象限交抛物线于A,直线l与抛物线的准线交于B,则|AB|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x、y满足$\left\{\begin{array}{l}{x+y-2≥0}\\{y≤x}\\{x≤2}\end{array}\right.$,目标函数z=x+$\frac{1}{2}$y,则z的最大值为(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-2|x-a|.
(1)若函数y=f(x)为偶函数,求a的值;
(2)若a=$\frac{1}{2}$,求函数y=f(x)的单调递增区间;
(3)当a>0时,若对任意的x∈(0,+∞),不等式f(x-1)≤2f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.定义:若曲线τ由椭圆T1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和椭圆T2:$\frac{{y}^{2}}{{b}^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(b>c>0)组成,当a、b、c成等比数列时,称曲线τ为“猫眼曲线”.若“猫眼曲线”τ过点P(0,-$\sqrt{2}$),且a、b、c的公比为$\frac{\sqrt{2}}{2}$.
(1)求“猫眼曲线”τ的方程;
(2)任作斜率为k(k≠0)且不过原点的直线与该曲线τ相交,且交椭圆T1所得弦的中点为M,交椭圆T2所得弦的中点为N,设OM、ON的斜率分别是kOM、kON,求$\frac{{k}_{OM}}{{k}_{ON}}$的值;
(3)若斜率为1的直线l交椭圆T1于点A、B,交椭圆T2于点C、D,且满足$\frac{|AB|}{|CD|}$=2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某园林基地培育了一种新观赏植物,经过一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从高度在80厘米以上以上(含80厘米)的植株中随机抽取2株,求所抽取的2株中至少有一株高度在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若过点A(2,-2)和点B(5,0)的直线与过点P(2m,1)和点Q(-1,-m)的直线平行,则m的值为(  )
A.-1B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案