精英家教网 > 高中数学 > 题目详情
15.在△ABC中,角A,B,C的所对边分别为a,b,c,若a2-b2=$\frac{1}{2}$c2,则$\frac{2acosB}{c}$的值为$\frac{3}{2}$.

分析 利用余弦定理化简即可得出.

解答 解:∵a2-b2=$\frac{1}{2}$c2
∴$\frac{2acosB}{c}$=$\frac{2a}{c}×\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{\frac{3}{2}{c}^{2}}{{c}^{2}}$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查了余弦定理的应用,考查了推理能力与计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[0,3])
男生平均每天运动的时间分布情况:
平均每天运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数212231810x
女生平均每天运动的时间分布情况:
平均每天运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数51218103y
(Ⅰ)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);
(Ⅱ)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.
①请根据样本估算该校“运动达人”的数量;
②请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘运动达人’与性别有关?”
运动达人非运动达人总  计
男  生
女  生
总  计
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.扇形OAB中,∠AOB=90°,OA=2,其中C是OA的中点,P是$\widehat{AB}$上的动点(含端点),若实数λ,μ满足$\overrightarrow{OP}$=λ$\overrightarrow{OC}$+μ$\overrightarrow{OB}$,则λ+μ的取值范围是(  )
A.[1,$\sqrt{2}$]B.[1,$\sqrt{3}$]C.[1,2]D.[1,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设复数z满足z•(2+i)=10-5i,(i为虚数单位),则z的模为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知在△ABC中,a=4,b=3,c=$\sqrt{13}$,则角C的度数为(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在锐角三角形ABC中,角A、B、C所对的边分别为a、b、c且$\sqrt{3}$(tanA-tanB)=1+tanA•tanB.
(1)求A-B的大小;
(2)已知$\frac{π}{6}$<B<$\frac{π}{3}$,向量$\overrightarrow{m}$=(sinA,cosA),$\overrightarrow{n}$=(cosB,sinB),求|3$\overrightarrow{m}$-2$\overrightarrow{n}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数的解析式;
(2)设$\frac{1}{12}$π<x<$\frac{11}{12}$π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}是等差数列a1=1,a5=13,设Sn为数列{(-1)nan}的前n项和,则S2016=(  )
A.2016B.-2016C.3024D.-3024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x∈[0,π],使sinx≥$\frac{1}{2}$的概率为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案