精英家教网 > 高中数学 > 题目详情
15.若过点A(2,-2)和点B(5,0)的直线与过点P(2m,1)和点Q(-1,-m)的直线平行,则m的值为(  )
A.-1B.1C.2D.$\frac{1}{2}$

分析 分别求出过点A(2,-2)、B(5,0)的直线与过点P(2m,1)、Q(-1,-m)的直线的斜率,由斜率相等列式求解m的值.

解答 解:由A(2,-2)、B(5,0)得,
过A、B的直线的斜率kAB=$\frac{0-(-2)}{5-2}$=$\frac{2}{3}$,
过点P(2m,1)、Q(-1,-m)的直线的斜率kPQ=$\frac{1+m}{2m+1}$,
∵过点A(2,-2)、B(5,0)的直线与过点P(2m,1)、Q(-1,-m)的直线平行,
∴$\frac{1+m}{2m+1}$=$\frac{2}{3}$,解得:m=1.
故选:B.

点评 本题考查了直线的一般式方程与直线平行的关系,考查了由直线上两点的坐标求直线的斜率,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知x∈[0,π],使sinx≥$\frac{1}{2}$的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
其中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为,$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若Cn+13=Cn3+Cn4,则n的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知sinα-cosα=-$\frac{{\sqrt{5}}}{5}$,则tanα的值为(  )
A.2或-2B.$\frac{1}{2}$或-$\frac{1}{2}$C.$\frac{1}{2}$或2D.-$\frac{1}{2}$或-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.关于函数f(x)=2sinx,下列说法正确的是(  )
A.f(x)为奇函数,值域为$[\frac{1}{2},2]$B.f(x)为偶函数,值域为[1,2]
C.f(x)为非奇非偶函数,值域为$[\frac{1}{2},2]$D.f(x)为非奇非偶函数,值域为[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=|x-m|+2m.
(1)若不等式f(x)≤2的解集为单元素集,求实数m的值;
(2)在(1)的条件下,若存在x0∈R,使得f(x0)+f(-x0)≤a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C的参数方程为$\left\{\begin{array}{l}x={cos^2}θ\\ y={sin^2}θ\end{array}\right.$(θ为参数),曲线D的极坐标方程为ρsin(θ+$\frac{π}{4}$)=-$\sqrt{2}$.
(1)将曲线C,D的参数方程化为普通方程;
(2)判断曲线C与曲线D的位置关系.

查看答案和解析>>

同步练习册答案