精英家教网 > 高中数学 > 题目详情
16.定义在区间[0,5π]上的函数y=2sinx的图象与y=cosx的图象的交点个数为5.

分析 画出函数y=2sinx与y=cosx在一个周期[0,2π]上的图象,即可得出结论.

解答 解:画出函数y=2sinx与y=cosx在一个周期[0,2π]上的图象如图实数:

由图可知,在一个周期内,两函数图象在[0,π]上有1个交点,在(π,2π]上有1个交点,
所以函数y=2sinx与y=cosx在区间[0,5π]上图象共有5个交点.
故答案为:5.

点评 本题考查了正弦函数和余弦函数的图象与应用问题,作出函数的图象是解题的关键,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.甲、乙两位同学本学期几次数学考试的平均成绩很接近,为了判断甲、乙两名同学成绩哪个稳定,需要知道这两个人的(  )
A.中位数B.众数C.方差D.频率分布

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是(  )
A.若m⊥α,m⊥β,则α⊥βB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n∥α,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,将三角形绕直角边AB旋转一周所成的几何体的体积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,△ABC中,AC=2,BC=4,∠ACB=90°,D、E分别是AC、AB的中点,将△ADE沿DE折起成△PDE,使面PDE⊥面BCDE,H、F分别是边PD和BE的中点,平面BCH与PE、PF分别交于点I、G.
(Ⅰ)求证:IH∥BC;
(Ⅱ)求二面角P-GI-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(3,-4).
(1)求($\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)的值;
(2)求向量$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线y-1=k(x-1)(k∈R)与x2+y2-2y=0的位置关系(  )
A.相离或相切B.相切C.相交D.相切或相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设点P(x,y)是曲线a|x|+b|y|=1(a>0,b>0)上任意一点,其坐标(x,y)也满足$\sqrt{{x}^{2}+{y}^{2}+2x+1}$+$\sqrt{{x}^{2}+{y}^{2}-2x+1}$≤2$\sqrt{2}$,则$\sqrt{2}$a+b取值范围为(  )
A.(0,2]B.[1,2]C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知圆C1:x2+y2=4与圆C2:(x-1)2+(y-3)2=4,过动点P(a,b)分别作圆C1、圆C2的切线PM,PN,(M,N分别为切点),若|PM|=|PN|,则a2+b2-6a-4b+13的最小值是(  )
A.5B.$\frac{8}{5}$C.$\frac{2}{5}\sqrt{10}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案