精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中均为实数, 为自然对数的底数.

(I)求函数的极值;

(II)设,若对任意的

恒成立,求实数的最小值.

【答案】(1)当时, 取得极大值,无极小值;(2.

【解析】试题分析:(1)由题对,研究其单调性,可得当时, 取得极大值,无极小值;

2)由题当时, ,由单调性可得在区间上为增函数,根据,构造函数

由单调性可得在区间上为增函数,不妨设

等价于

故又构造函数

可知在区间上为减函数,在区间上恒成立,

在区间上恒成立,

,设

,则在区间上为减函数,

在区间上的最大值

试题解析:(1)由题得,

,得.,

列表如下:

1

大于0

0

小于0

极大值

时, 取得极大值,无极小值;

2)当时,

在区间上恒成立,

在区间上为增函数,

在区间上恒成立,

在区间上为增函数,不妨设

等价于

在区间上为减函数,

在区间上恒成立,

在区间上恒成立,

,则在区间上为减函数,

在区间上的最大值

实数的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】孝感车天地关于某品牌汽车的使用年限(年)和所支出的维修费用(千元)由如表的统计资料:

2

3

4

5

6

2.1

3.4

5.9

6.6

7.0

(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;

(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|1≤x≤4},B={x|m≤x≤m+1}.
(1)当m=3时,求A∩B与A∩RB;
(2)若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x (x∈R).
(1)讨论f(x)的奇偶性;
(2)若2xf(2x)+mf(x)≥0对任意的x∈[0,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)已知直线与曲线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.
(2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=cos(2x+ ),x∈R的图象,只需把函数y=cos2x的图象(
A.向左平行移动 个单位长度
B.向左平行移动 个单位长度
C.向右平行移动 个单位长度
D.向右平行移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,侧棱底面,且 是侧棱上的动点.

(Ⅰ)求四棱锥的体积;

(Ⅱ)如果的中点,求证平面

(Ⅲ)是否不论点在侧棱的任何位置,都有?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列{an}的前n项和是Sn , 若{an}和{ }都是等差数列,且公差相等,则a1=

查看答案和解析>>

同步练习册答案