【题目】已知函数f(x)=2x﹣ (x∈R).
(1)讨论f(x)的奇偶性;
(2)若2xf(2x)+mf(x)≥0对任意的x∈[0,+∞)恒成立,求实数m的取值范围.
【答案】
(1)解:由题意,x∈R,
由f(﹣x)=2﹣x﹣ = ﹣2x=﹣f(x),知f(x)是奇函数
(2)解:当x=0时,m∈R.
x∈(0,+∞)时,要使 ≥0,
即 ≥0恒成立,
∵x>0时,2x﹣ >0恒成立,
∴22x+1+m≥0,即m≥﹣(22x+1),
∴m≥﹣(20+1)=﹣2.
综上,m∈[﹣2,+∞)
【解析】(1)求出函数的定义域为R,再由f(﹣x)=﹣f(x)可得函数f(x)=2x﹣ 为奇函数;(2)由2xf(2x)+mf(x)≥0对任意的x∈[0,+∞)恒成立,可得m≥﹣(22x+1),求出22x+1的最大值得答案.
【考点精析】关于本题考查的函数的奇偶性,需要了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax+(k﹣1)a﹣x(a>且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)>0,试判断函数单调性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范围;
(3)若f(1)= ,设g(x)=a2x+a﹣2x﹣2mf(x),g(x)在[1,+∞)上的最小值为﹣1,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知: 、 、 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐标.
(2)若| |= ,且 +2 与2 ﹣ 垂直,求 与 的夹角θ
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com