精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2x (x∈R).
(1)讨论f(x)的奇偶性;
(2)若2xf(2x)+mf(x)≥0对任意的x∈[0,+∞)恒成立,求实数m的取值范围.

【答案】
(1)解:由题意,x∈R,

由f(﹣x)=2x = ﹣2x=﹣f(x),知f(x)是奇函数


(2)解:当x=0时,m∈R.

x∈(0,+∞)时,要使 ≥0,

≥0恒成立,

∵x>0时,2x >0恒成立,

∴22x+1+m≥0,即m≥﹣(22x+1),

∴m≥﹣(20+1)=﹣2.

综上,m∈[﹣2,+∞)


【解析】(1)求出函数的定义域为R,再由f(﹣x)=﹣f(x)可得函数f(x)=2x 为奇函数;(2)由2xf(2x)+mf(x)≥0对任意的x∈[0,+∞)恒成立,可得m≥﹣(22x+1),求出22x+1的最大值得答案.
【考点精析】关于本题考查的函数的奇偶性,需要了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线方程为.

(1)求该双曲线的实轴长、虚轴长、离心率;

(2)若抛物线的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且离心率为.

(1)求椭圆的方程;

(2)设点轴上的射影为点,过点的直线与椭圆相交于 两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax+(k﹣1)ax(a>且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)>0,试判断函数单调性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范围;
(3)若f(1)= ,设g(x)=a2x+a2x﹣2mf(x),g(x)在[1,+∞)上的最小值为﹣1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣4|x|+1,若f(x)在区间[a,2a+1]上的最大值为1,则a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知),定义.

(1)求函数的极值

(2)若,且存在使,求实数的取值范围;

(3)若,试讨论函数)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中均为实数, 为自然对数的底数.

(I)求函数的极值;

(II)设,若对任意的

恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐标.
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是边长为的棱形,且分别是的中点.

(1)证明:平面

(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

同步练习册答案