精英家教网 > 高中数学 > 题目详情
已知数列{an},an>0,am•an=2m+n,m,n∈N*
(1)求证:{an}为等比数列,并求出通项公式an
(2)记数列 {nbn},的前n项和为Sn且Sn=n(n+1)an,求
a1
2b1
+
a2
3b2
+
a3
4b3
+…+
an
(n+1)bn
分析:(1)令n=m=1可求得a1,然后令m=1,n=n+1,可得an,an+1,由等比数列的定义可判断,并求得通项公式;
(2)由nbn与Sn的关系可求得nbn,从而可得bn
an
(n+1)bn
,运用裂项相消法可求和;
解答:解:(1)由题意得,a1a1=22,a1>0,得a1=2,
a1an=21+na1an+1=22+n
所以
an+1
an
=2,且an≠0,
所以:{an}为等比数列,通项公式an=2n
(2)由Sn=n(n+1)an,当n=1时,得b1=1×(1+1)a1=4,
当n≥2时,Sn=n(n+1)•2n,①
Sn-1=n(n-1)•2n-1,②
①-②得nbn=n(n+3)•2n-1,即bn=(n+3)•2n-1
b1=4满足上式,所以bn=(n+3)•2n-1
所以
an
(n+1)bn
=
2
(n+1)(n+3)
=
1
n+1
-
1
n+3

所以
a1
2b1
+
a2
3b2
+
a3
4b3
+…+
an
(n+1)bn

=
1
2
-
1
4
+
1
3
-
1
5
+
1
4
-
1
6
+…+
1
n-1
-
1
n+1
+
1
n
-
1
n+2
+
1
n+1
-
1
n+3

=
5
6
-
1
n+2
-
1
n+3
点评:本题考查等比数列的定义、通项公式,考查数列求和,裂项相消法对数列求和高考考查重点,应重点掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足
a1-1
2
+
a2-1
22
+…+
an-1
2n
=n2+n(n∈N*)

(I)求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a 1=
2
5
,且对任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(1)求证:数列{
1
an
}为等差数列,并求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a 1=
2
5
,且对任意n∈N+,都有
an
an+1
=
4an+2
an+1+2

(1)求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a n+an+1=
1
2
(n∈N+)
,a 1=-
1
2
,Sn是数列{an}的前n项和,则S2013=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}:,,,…,,…,其中a是大于零的常数,记{an}的前n项和为Sn,计算S1,S2,S3的值,由此推出计算Sn的公式,并用数学归纳法加以证明.

查看答案和解析>>

同步练习册答案