精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四边形为菱形,且,取中点为.现将四边形沿折起至,使得.

)求证:平面

)求二面角的余弦值;

)若点满足,当平面时,求的值.

【答案】)见解析;;(.

【解析】

)只需证明,由线面垂直的判定定理可得证明;

)以为原点,所在直线分别为轴建立空间直角坐标系,求得平面的法向量和平面的法向量.设二面角的大小为,可知为锐角,利用空间向量法即可得到所求值;

)由计算出向量的坐标,由,计算可得所求值.

)在左图中,为等边三角形,E中点,所以,所以.

因为,所以.

因为,所以平面

)设菱形的边长为,由()可知.

所以以为原点,所在直线分别为轴,建立如图空间坐标系.

可得.

设平面的法向量为,所以,即.

,则.

平面的法向量为.

设二面角的大小为,则为锐角,

)由

因为平面,则,即,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第道题也由该同学(最先答题的同学)作答的概率为),其中,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是,如果某位同学有机会答第道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题

1)请预测第二轮最先开始作答的是谁?并说明理由

2)①求第二轮答题中

②求证为等比数列,并求)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆点,且的周长为.

1)求椭圆的方程;

2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,求证:的外接圆恒过原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,用表示不超过的最大整数,例如,对于函数,若存在,使得,则称函数是“函数”.

1)判断函数是否是“函数”;

2)设函数是定义在上的周期函数,其最小正周期是,若不是“函数”,求的最小值;

3)若函数是“函数”,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点为,离心率为,过点且垂直于轴的直线被椭圆截得的弦长为1.

1)求椭圆的方程;

2)若直线交椭圆于点两点,与线段和椭圆短轴分别交于两个不同点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数,它的导函数为.

(1)当时,求的零点;

(2)若函数存在极小值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数处有最大值,求的值;

2)当时,判断的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了比较两种治疗失眠症的药(分别称为药,药)的疗效,某机构随机地选取 位患者服用药,位患者服用药,观察这位患者的睡眠改善情况.这些患者服用一段时间后,根据患者的日平均增加睡眠时间(单位:),以整数部分当茎,小数部分当叶,绘制了如下茎叶图:

1)根据茎叶图判断哪种药对增加睡眠时间更有效?并说明理由;

2)求这名患者日平均增加睡眠时间的中位数,并将日平均增加睡眠时间超过和不超过的患者人数填入下面的列联表:

超过

不超过

服用

服用

3)根据(2)中的列联表,能否有的把握认为两种药的疗效有差异?

附: .

0.01

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,并且在两种坐标系中取相同的长度单位.若将曲线为参数)上每一点的横坐标变为原来的(纵坐标不变),然后将所得图象向右平移2个单位,再向上平移3个单位得到曲线C.直线l的极坐标方程为.

1)求曲线C的普通方程;

2)设直线l与曲线C交于AB两点,与x轴交于点P,线段AB的中点为M,求.

查看答案和解析>>

同步练习册答案