【题目】已知椭圆
的左右焦点为
,
,离心率为
,过点
且垂直于
轴的直线被椭圆
截得的弦长为1.
(1)求椭圆
的方程;
(2)若直线
交椭圆
于点
,
两点,与线段
和椭圆短轴分别交于两个不同点
,
,且
,求
的最小值.
科目:高中数学 来源: 题型:
【题目】数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线
为四叶玫瑰线,下列结论正确的有( )
![]()
(1)方程
(
),表示的曲线在第二和第四象限;
(2)曲线
上任一点到坐标原点
的距离都不超过2;
(3)曲线
构成的四叶玫瑰线面积大于
;
(4)曲线
上有5个整点(横、纵坐标均为整数的点);
A.(1)(2)B.(1)(2)(3)
C.(1)(2)(4)D.(1)(3)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,
.
(1)当
时,求函数
的单调区间;
(2)若曲线
在点(1,0)处的切线为l : x+y-1=0,求a,b的值;
(3)若
恒成立,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形
为菱形,且
,取
中点为
.现将四边形
沿
折起至
,使得
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)若点
满足
,当
平面
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系.xOy中,曲线C1的参数方程为
(
为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)已知曲线C2的极坐标方程为
,点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,且A,B均异于原点O,且|AB|=4
,求α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在抗击新冠肺炎的疫情中,某医院从3位女医生,5位男医生中选出4人参加援鄂医疗队,至少有一位女医生入选,其中女医生甲和男医生乙不能同时参加,则不同的选法共有种______(用数字填写答案).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com