精英家教网 > 高中数学 > 题目详情

化简:

0

解析试题分析:=,又,∴,∴,即
考点:本题考查了三角恒等变换
点评:熟练掌握二倍角公式是解决此类问题的关键,解决时要注意角的范围,属基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数(其中 )在处取得最大值2,其图象与轴的相邻两个交点的距离为
(I)求的解析式;
(II)求函数的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在一个周期内的图像下图所示。

(1)求函数的解析式;
(2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且
(I)将表示成的函数,并求的最小正周期;
(II)记的最大值为 、分别为的三个内角对应的边长,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其图象过点
(Ⅰ)求的值;
(Ⅱ)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,求函数上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
中,已知内角,边.设内角,的面积为.
(Ⅰ)求函数的解析式和定义域;
(Ⅱ)当角B为何值时,的面积最大。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数
(1)用五点法画出它在一个周期内的闭区间上的图象;

(2)求单调增减区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的最大值2,其图象相邻两条对称轴之间的距离为
(1)求的解析式;
(2)求函数的单调增区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知. 记(其中都为常数,且). 
(Ⅰ)若,求的最大值及此时的值;
(Ⅱ)若,①证明:的最大值是;②证明:

查看答案和解析>>

同步练习册答案