精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,设直线过点A( ),B(3, ),且直线与曲线C:ρ=2rsinθ(r>0)有且只有一个公共点,求实数r的值.

【答案】解:点A( ),B(3, ),分别化为直角坐标A ,B ,即A ,B(0,3).
∴直线AB的方程为:y= x+3,化为:y= +3.
直线与曲线C:ρ=2rsinθ(r>0)化为:ρ2=2rρsinθ,可得直角坐标方程:x2+y2=2ry,配方为:x2+(y﹣r)2=r2 , 可得圆心C(0,r),半径r.
∵直线与曲线C:ρ=2rsinθ(r>0)有且只有一个公共点,
∴直线与圆C相切,∴ =r,解得r=1
【解析】把极坐标及其极坐标方程化为直角坐标方程,利用直线与圆相切的充要条件即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)的导函数为f′(x),对任意的x∈R,都有2f′(x)>f(x)成立,则(  )

A. 3f(2ln 2)>2f(2ln 3)

B. 3f(2ln 2)<2f(2ln 3)

C. 3f(2ln 2)=2f(2ln 3)

D. 3f(2ln 2)与2f(2ln 3)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣12x+b,则下列结论正确的是(
A.函数f(x)在(﹣∞,﹣1)上单调递增
B.函数f(x)在(﹣∞,﹣1)上单调递减
C.若b=﹣6,则函数f(x)的图象在点(﹣2,f(﹣2))处的切线方程为y=10
D.若b=0,则函数f(x)的图象与直线y=10只有一个公共点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,D是到原点的距离不大于1的点构成的区域,E是满足不等式组 的点(x,y)构成的区域,向D中随机投一点,则所投的点落在E中的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

9

9.2

9.4

9.6

9.8

10

销量y(件)

100

94

93

90

85

78

(1)求回归直线方程求回归直线方程.

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,江的两岸可近似的看成两平行的直线,江岸的一侧有A,B两个蔬菜基地,江的另一侧点C处有一个超市.已知A、B、C中任意两点间的距离为20千米.超市欲在AB之间建一个运输中转站D,A,B两处的蔬菜运抵D处后,再统一经过货轮运抵C处.由于A,B两处蔬菜的差异,这两处的运输费用也不同.如果从A处出发的运输费为每千米2元,从B处出发的运输费为每千米1元,货轮的运输费为每千米3元.

(1)设∠ADC=α,试将运输总费用S(单位:元)表示为α的函数S(α),并写出自变量的取值范围;
(2)问中转站D建在何处时,运输总费用S最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x∈R,y∈R,若复数(x2+y2-4)+(x-y)i是纯虚数,则点(x,y)的轨迹是(  )

A. 以原点为圆心,以2为半径的圆

B. 两个点,其坐标为(2,2),(-2,-2)

C. 以原点为圆心,以2为半径的圆和过原点的一条直线

D. 以原点为圆心,以2为半径的圆,并且除去两点(),(-,-)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n2a2n的值;
(2)当n≥6时,求证: a2+2A a3+…+22n2 a2n<49n2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为 (α为参数)以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为 .若直线l与曲线C交于A,B,求线段AB的长.

查看答案和解析>>

同步练习册答案