精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=x3﹣12x+b,则下列结论正确的是(
A.函数f(x)在(﹣∞,﹣1)上单调递增
B.函数f(x)在(﹣∞,﹣1)上单调递减
C.若b=﹣6,则函数f(x)的图象在点(﹣2,f(﹣2))处的切线方程为y=10
D.若b=0,则函数f(x)的图象与直线y=10只有一个公共点

【答案】C
【解析】解:函数f(x)=x3﹣12x+b,可得f′(x)=3x2﹣12,令3x2﹣12=0,可得x=﹣2,或x=2.
函数f(x)在(﹣∞,﹣2)上单调递增,所以A、B都不正确;b=﹣6,f′(﹣2)=0.f(﹣2)=10,
则函数f(x)的图象在点(﹣2,f(﹣2))处的切线方程为y=10,正确;
若b=0,则函数f(x)的极大值为:16,图象与直线y=10只有一个公共点错误;
故选:C.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴,长度单位相同,建立极坐标系,已知圆A的参数方程为 (其中θ为参数),圆B的极坐标方程为ρ=2sinθ.
(Ⅰ)分别写出圆A与圆B的直角坐标方程;
(Ⅱ)判断两圆的位置关系,若两圆相交,求其公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司经营一批进价为每件400元的商品,在市场调查时发现,此商品的销售单价x(元)与日销售量y(件)之间的关系如下表所示:

x/元

500

600

700

800

900

y/件

10

8

9

6

1

(1)求y关于x的回归直线方程.

(2)借助回归直线方程,预测销售单价为多少元时,日利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:函数f(x)=lg(ax2﹣x+ )的值域为R;命题q:3x﹣9x<a对一切实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinx﹣xcosx.
(1)讨论f(x)在(0,2π)上的单调性;
(2)若关于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有两个根,求实数m的取值范围.
(3)求证:当x∈(0, )时,f(x)< x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出两个命题:
命题甲:关于x的不等式x2+(a﹣1)x+a2≤0的解集为
命题乙:函数y=(2a2﹣a)x为增函数.
(1)甲、乙至少有一个是真命题;
(2)甲、乙有且只有一个是真命题;
分别求出符合(1)(2)的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,D是到原点的距离不大于1的点构成的区域,E是满足不等式组 的点(x,y)构成的区域,向D中随机投一点,则所投的点落在E中的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,设直线过点A( ),B(3, ),且直线与曲线C:ρ=2rsinθ(r>0)有且只有一个公共点,求实数r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:(a>b>0)的离心率为,以坐标原点O为圆心,椭圆C的短半轴长为半径的圆与直线x+y+=0相切.A,B分别是椭圆C的左、右顶点,直线lB点且与x轴垂直.

(1)求椭圆C的标准方程;

(2)设G是椭圆C上异于A,B的任意一点,过点GGH⊥x轴于点H,延长HG到点Q使得|HG|=|GQ|,连接AQ并延长交直线l于点M,N为线段MB的中点,判断直线QN与以AB为直径的圆O的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案