精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x﹣alnx+
(1)若a=1,求f(x)在x∈[1,3]的最值;
(2)求函数f(x)的单调区间;
(3)若存在x0∈[1,e],使得f(x0)<0成立,求a的取值范围.

【答案】
(1)解:由题意知 ,x∈[1,3].

令f'(x)=0,x1=2,x2=﹣1(舍).

x

1

(1,2)

2

(2,3)

3

f'(x)

﹣2

为负

0

为正

f(x)

3

递减

极小值

递增

由上表可知,函数f(x)的最小值为f(2)=2﹣ln2,函数f(x)的最大值为f(1)=3.


(2)解: ,令f'(x)=0,x1=﹣1,x2=1+a.

由于函数f(x)的定义域为(0,+∞),

当1+a≤0时,f'(x)>0,

当1+a>0时,0<x<1+a有f'(x)<0,x>1+a有f'(x)>0.

所以,当a≤﹣1时,函数f(x)的递增区间是(0,+∞);

当a>﹣1时,函数f(x)的递减区间是(0,1+a);递增区间是[1+a,+∞).


(3)解:当1+a≤1时,即a≤0时,函数f(x)在[1,e]上单调递增,f(1)<0解得a<﹣2;

当1+a≥e时,即a≥e﹣1时,函数f(x)在[1,e]上单调递减,f(e)<0解得

当1<1+a<e时,即0<a<e﹣1时,函数f(x)在[1,1+a]上单调递减,[1+a,e]上单调递增,

∴f(1+a)=2+a﹣aln(1+a)<0,由于0<ln(1+a)<1,

所以a>aln(1+a),因此2+a﹣aln(1+a)>2,不等式f(1+a)<0无解.

综上所述,a<﹣2或


【解析】(1)代入a值,利用导函数直接判断;(2)求导,在定义域内对a进行分类讨论;(3)使得f(x0)<0成立,只需求出区间内的最小值即可,对a进行分类讨论,求出函数的最小值.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的极值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,又数列{ }(n∈N*)是公差为1的等差数列.
(1)求数列{an}的通项公式an
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 是偶函数,若h(2x﹣1)≤h(b),则x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的

A

B

C

D

E

F

这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 ( )

A. 360种 B. 432种 C. 456种 D. 480种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是棱CD上的动点,G为C1D1的中点,H为A1G的中点.

(1)当点F与点D重合时,求证:EF⊥AH;
(2)设二面角C1﹣EF﹣C的大小为θ,试确定点F的位置,使得sin θ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从01234这五个数中任选三个不同的数组成一个三位数,记X为所组成的三位数各位数字之和.

1)求X是奇数的概率;

2)求X的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为(0,+∞)的函数f(x)满足:
①x>1时,f(x)<0;
②f( )=1;
③对任意的正实数x,y,都有f(xy)=f(x)+f(y).
(1)求证:f( )=﹣f(x);
(2)求证:f(x)在定义域内为减函数;
(3)求满足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c满足f(2﹣x)=f(2+x),f(0)>0,且f(m)=f(n)=0(m≠n),则log4m﹣ n的值是(
A.小于1
B.等于1
C.大于1
D.由b的符号确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】广播电台为了了解某地区的听众对某个戏曲节目的收听情况,随机抽取了100名听众进行调查,下面是根据调查结果绘制的听众日均收听该节目的频率分布直方图,将日均收听该节目时间不低于40分钟的听众成为“戏迷”

(1)根据已知条件完成2×2列联表,并判断“戏迷”与性别是否有关?

“戏迷”

非戏迷

总计

10

55

总计

附:K2=

P(K2≥k)

0.05

0.01

k

3.841

6.635


(2)将上述调查所得到的频率当作概率.现在从该地区大量的听众中,采用随机抽样的方法每次抽取1名听众,抽取3次,记被抽取的3名听众中“戏迷”的人数为X,若每次抽取的结果相互独立,求X的分布列,数学期望及方差.

查看答案和解析>>

同步练习册答案