分析 直接利用正弦定理,转化角为边的关系,利用大边对大角,余弦定理可求cosC的值,结合C的范围即可得解.
解答 解:∵sinA:sinB:sinC=3:5:7,
∴由正弦定理可得:a:b:c=3:5:7,
∴C为最大角,a=$\frac{3c}{7}$,b=$\frac{5c}{7}$,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{\frac{9{c}^{2}}{49}+\frac{25{c}^{2}}{49}-{c}^{2}}{2×\frac{3c}{7}×\frac{5c}{7}}$=-$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.
点评 本题考查正弦定理,余弦定理在解三角形中的应用,考查了三角形的解法,考查计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若d<0,则数列{Sn}有最大项 | |
| B. | 若数列{S}有最大项,则d<0 | |
| C. | 若数列{Sn}是递增数列,则对任意n∈N*均有Sn>0 | |
| D. | 若对任意n∈N*均有Sn>0,则数列{Sn}是递增数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 17 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com