精英家教网 > 高中数学 > 题目详情
11.函数y=$\sqrt{{x}^{2}-x-1}$的值域是[0,+∞).

分析 根据复合函数单调性的性质即可得到结论.

解答 解:∵y=x2-x-1的判别式△=1+4=5>0,
∴y=$\sqrt{{x}^{2}-x-1}$≥0,
即函数的值域为[0,+∞),
故答案为:[0,+∞)

点评 本题主要考查值域的求解,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x≤0}\\{{log}_{2}(x+1),x>0}\end{array}\right.$
(1)作出函数f(x)的图象,并写出单调区间;
(2)若函数y=f(x)-m有两个零点,求实数m的取值范用.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.己知α∈(0,$\frac{π}{2}$),cos(α+$\frac{π}{4}$)=-$\frac{3}{5}$,则sinα=$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=x2-4x-2在闭区间[0,m]上有最大值-2,最小值-6,则m的取值范围是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求方程ax2+2x+1=0有两个不相等的负实根的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.命题p:“函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a-$\frac{3}{4}$)x+1在R上既有增区间又有减区间”,命题q:“不等式ax2+2ax+1>0对一切实数x都成立”,若“p或q”与“非q”同时为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=-2x2+4x+5的顶点坐标是(1,7).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)=ax2+bx+c(x∈R,a≠0).
(1)若a=1,b=-4,c=3,求f(x)<0的解集.
(2)若a<0,c=-2,方程f(x)=x的两实根x1,x2满足x1∈(0,1),x2∈(1,2).求证:-4<$\frac{b}{a}$<-1.
(3)若函数f(x)的最小值为0,且a<b,求$\frac{a+2b+4c}{b-a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(两选一)
(1)一同学在电脑中打出如下图若干个圆(○表示空心圆,●表示实心圆)
○●○○●○○○●○○○○●○○○○○●○…
问:到2006个圆中有61 个实心圆.
(2)如图,它满足①第n行首尾两数均为n,②表中的递推关系类似杨辉三角,则第n行(n≥2)第2个数是$\frac{{n}^{2}-n+2}{2}$.

查看答案和解析>>

同步练习册答案