科目:高中数学 来源: 题型:
如果一个点是一个指数函数和一个对数函数的图象的交点,那么称这个点为“好点”.下列四个点P1(1,1),P2(1,2),P3
,P4(2,2)中,“好点”的个数为( )
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档产品60件,每提高一个档次将少生产3件产品.则获得利润最大时生产产品的档次是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值.
(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f
,c=f(3),则( )
A.a<b<c B.c<b<a
C.c<a<b D.b<c<a
查看答案和解析>>
科目:高中数学 来源: 题型:
对于在R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有( )
A.f(x)≥f(a) B.f(x)≤f(a)
C.f(x)>f(a) D.f(x)<f(a)
查看答案和解析>>
科目:高中数学 来源: 题型:
已知f(x)=
x2-cosx,x∈[-1,1],则导函数f′(x)是( )
A.仅有最小值的奇函数
B.既有最大值,又有最小值的偶函数
C.仅有最大值的偶函数
D.既有最大值,又有最小值的奇函数
查看答案和解析>>
科目:高中数学 来源: 题型:
已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x),对于任意x∈R恒成立,则( )
A.f(2)>e2·f(0),f(2 010)>e2 010·f(0)
B.f(2)<e2·f(0),f(2 010)>e2 010·f(0)
C.f(2)>e2·f(0),f(2 010)<e2 010·f(0)
D.f(2)<e2·f(0),f(2 010)<e2 010·f(0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com