精英家教网 > 高中数学 > 题目详情
(2012•江门一模)已知向量
a
=(1,2)
b
=(-1,3)
c
a
c
0
,则
c
b
的夹角是(  )
分析:根据题意,设
c
=λ(1,2)
(λ≠0),且
c
b
的夹角为θ.由向量模的公式分别算出|
c
|=
5
|λ|
、|
b
|=
10
,结合
c
b
=5λ利用向量的夹角公式算出cosθ=
c
b
|
c
|•|
b
|
=±
2
2
,由此即可得到
c
b
的夹角.
解答:解:∵
c
a
c
0
a
=(1,2)

∴可设
c
=λ(1,2)
,λ≠0,
得|
c
|=
λ2(1+4)
=
5
|λ|

∵|
b
|=
(-1)2+32
=
10
c
b
=λ×(-1)+2λ×3=5λ
∴满足cosθ=
c
b
|
c
|•|
b
|
=
5
|λ|•
10
=±
2
2

∵θ∈[0,π],∴θ=
π
4
4

故选:D
点评:本题给出向量
c
与已知向量
a
平行,求向量
c
与已知向量
b
的夹角.着重考查了平面向量平行的条件、平面向量数量积的定义与运算性质、向量的夹角公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江门一模)(几何证明选讲选做题)
如图,E、F是梯形ABCD的腰AD、BC上的点,其中CD=2AB,EF∥AB,若
EF
AB
=
CD
EF
,则
AE
ED
=
2
2
(或相等的数值)
2
2
(或相等的数值)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)有人收集了春节期间平均气温x与某取暖商品销售额y的有关数据如下表:
平均气温(℃) -2 -3 -5 -6
销售额(万元) 20 23 27 30
根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间线性回归方程y=
b
x+a的系数
b
=-2.4
.则预测平均气温为-8℃时该商品销售额为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)如图,某几何体的正视图和侧视图都是对角线长分别为4和3的菱形,俯视图是对角线长为3的正方形,则该几何体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)如图,四边形ABCD中,AB=5,AD=3,cosA=
45
,△BCD是等边三角形.
(1)求四边形ABCD的面积;
(2)求sin∠ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)已知函数f(x)=lnx-ax+1,a∈R是常数.
(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程,并证明函数y=f(x)(x≠1)的图象在直线l的下方;
(2)讨论函数y=f(x)零点的个数.

查看答案和解析>>

同步练习册答案