½â´ð£º
½â£º¢Ùº¯Êýf£¨x£©=ax+1-2aÔÚÇø¼ä£¨0£¬1£©ÄÚÓÐÁãµãµÄ³äÒªÌõ¼þÊÇf£¨0£©f£¨1£©=£¨1-2a£©£¨1-a£©£¼0£¬
½âµÃ
£¼a£¼1£®Òò´Ë
£¼a£¼
ÊǺ¯Êýf£¨x£©ÔÚ£¨0£¬1£©ÄÚÓÉÁãµãµÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢ÚÒÑÖªE£¬F£¬G£¬HÊǿռäËĵ㣬ÃüÌâ¼×£ºE£¬F£¬G£¬HËĵ㲻¹²Ã棬ÃüÌâÒÒ£ºÖ±ÏßEFºÍGH²»Ïཻ£¬
Èô¼×ÕýÈ·£¬ÔòEFÓëGHΪÒìÃæÖ±Ïߣ¬Òò´ËÖ±ÏßEFºÍGH²»Ïཻ£¬¼´ÒÒÕýÈ·£»
ÈôÒÒÕýÈ·£¬¼´Ö±ÏßEFºÍGH²»Ïཻ£¬Ôò¿ÉÄÜEF¡ÎGH£¬¿ÉÖªE£¬F£¬G£¬HËÄµã¹²Ãæ£¬¼´¼×²»Ò»¶¨ÕýÈ·£®
ÓÉÒÔÉÏ¿ÉÖª£º¼×ÊÇÒÒ³ÉÁ¢µÄ³ä·Ö²»±ØÒªÌõ¼þ£¬ÕýÈ·£»
¢ÛÓÉ¡°¶ÔÈÎÒâµÄʵÊýx£¬|x+1|+|x-1|¡Ýaºã³ÉÁ¢¡±£¬
Ôòa¡Ü£¨|x+1|+|x-1|£©
min=2£¬
Òò´Ë¡°a¡Ü2¡±ÊÇ¡°¶ÔÈÎÒâµÄʵÊýx£¬|x+1|+|x-1|¡Ýaºã³ÉÁ¢¡±µÄ³äÒªÌõ¼þ£¬¹Ê¢Û²»ÕýÈ·£»
¢Ü¡°·½³Ìmx
2+£¨m-1£©y
2=1±íʾ˫ÇúÏß¡±µÄ³ä·Ö±ØÒªÌõ¼þÊÇm£¨m-1£©£¼0£¬½âµÃ0£¼m£¼1£®
Òò´Ë¡°0£¼m£¼1¡±ÊÇ¡°·½³Ìmx
2+£¨m-1£©y
2=1±íʾ˫ÇúÏß¡±µÄ³ä·Ö±ØÒªÌõ¼þ£¬ÕýÈ·£®
×ÛÉÏ¿ÉÖª£ºÖ»ÓТ٢ڢÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®