精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2sinx,sinx),
b
=(sinx,2
3
cosx),函数f(x)=
a
b

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且2acosB=bcosC+ccosB,若对任意满足条件的A,不等式f(A)+m>0恒成立,求实数m的取值范围.
考点:平面向量数量积的运算,正弦定理,余弦定理
专题:平面向量及应用
分析:(I)利用数量积运算、两角和差、倍角公式、正弦函数的单调递增区间即可得出;
(II)由正弦定理、三角形的内角和定理、正弦函数的单调性即可得出.
解答: 解:(I)函数f(x)=
a
b
=2sin2x+2
3
sinxcosx
=
3
sin2x-cos2x+1

=2sin(2x-
π
6
)
+1.
2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,解得kπ-
π
6
≤x≤kπ+
π
3
,k∈Z.
∴函数f(x)的单调递增区间是[kπ-
π
6
,kπ+
π
3
]
(k∈Z).
(II)∵2acosB=bcosC+ccosB,
由正弦定理可得:2cosBsinA=sinBcosC+cosBsinC,
∴2cosBsinA=sin(B+C)=sinA,
∵0<A<π,∴sinA≠0.
cosB=
1
2

又0<B<π.
B=
π
3
.∴0<A<
3

-
π
6
<2A-
π
6
6
,∴-
1
2
<sin(2A-
π
6
)≤1
0<2sin(2A-
π
6
)+1≤3

∴f(A)=2sin(2A-
π
6
)
+1的值域为(0,3].
不等式f(A)+m>0恒成立,∴m>-f(A)恒成立,
∵-f(A)<0恒成立,
∴m≥0,m的取值范围是[0,+∞).
点评:本题主要考查了两角和差、倍角公式,考查了数量积的运算、三角函数的单调性、正弦余弦定理的应用,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={2a},B={a,b),若A∩B={
1
2
},则A∪B为(  )
A、{
1
2
,1,b}
B、{-1,
1
2
}
C、{
1
2
,1}
D、{-1,
1
2
,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次演讲比赛中,6位评委对一名选手打分的茎叶图如图所示,若去掉一个最高分和一个最低分,得到一组数据xi(1≤i≤4),在如图所示的程序框图中,x是这4个数据的平均数,则输出的v的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l1,在路南侧沿直线铺设线路l2,现要在矩形区域ABCD内沿直线将l1与l2接通.已知AB=60m,BC=80m,公路两侧铺设水管的费用为每米1万元,穿过公路的EF部分铺设水管的费用为每米2万元,设∠EFB=
π
2
-α,矩形区域内的铺设水管的总费用为W.

(1)求W关于α的函数关系式;
(2)求W的最小值及相应的角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
2
sin
π
8
xcos
π
8
x+2
2
cos2
π
8
x-
2
,x∈R.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若函数f(x)图象上的两点P,Q的横坐标依次为2,4,O为坐标原点,求△OPQ的外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

第十八届省运会将于2014年9月在徐州市举办.为营造优美的环境,举办方决定在某“葫芦”形花坛中建喷泉.如图,该花坛的边界是两个半径为10米的圆弧围成,两圆心O1、O2之间的距离为10米.
(1)如图甲,在花坛中建矩形喷泉,四个顶点A,B,C,D均在圆弧上,O1O2⊥AB于点M.设∠AO2M=θ,求矩形的宽AB为多少时,可使喷泉ABCD的面积最大;
(2)如图乙,在花坛中间铺设一条宽为2米的观赏长廊以作休闲之用,则矩形喷泉变为两个全等的等腰三角形,其中NA=NB,NO2=4米.若∠AO2M=θ∈[
π
6
π
4
],求喷泉的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
x
+
1
2x2
,a∈R.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)证明:(x-1)(e-x-x)+2lnx<
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a+
b
x
)en,a,b为常数,a≠0.
(Ⅰ)若a=2,b=1,求函数f(x)在(0,+∞)上的单调区间;
(Ⅱ)若a>0,b>0,求函数f(x)在区间[1,2]的最小值;
(Ⅲ)若a=1,b=-2时,不等式f(x)≤lnx•en恒成立,判断代数式[(n+1)!]2与(n+1)en-2(n∈N*)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于下列命题:
①函数f(x)=ax+1-2a在区间(0,1)内有零点的充分不必要条件是
1
2
<a<
2
3

②已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的充分不必要条件;
③“a<2”是“对任意的实数x,|x+1|+|x-1|≥a恒成立”的充要条件;
④“0<m<1”是“方程mx2+(m-1)y2=1表示双曲线”的充分必要条件.其中所有真命题的序号是
 

查看答案和解析>>

同步练习册答案