精英家教网 > 高中数学 > 题目详情
11.函数y=|tanx|的图象关于x=$\frac{kπ}{2}$,k∈z对称.

分析 根据正切函数的图象特征,画出函数y=|tanx|的图象,数形结合可得结论.

解答 解:根据函数y=|tanx|的图象可得,它的图象关于直线x=$\frac{kπ}{2}$,k∈z对称,
故答案为:x=$\frac{kπ}{2}$,k∈z.

点评 本题主要考查正切函数的图象特征,带有绝对值的函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2+2ax+2,求f(x)在[-5,5]上的最大值f(x)max=$\left\{\begin{array}{l}{27+10a,a>0}\\{27-10a,a≤0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某超市举办促销活动,凡购物满100元的顾客将获得3次模球抽奖机会,抽奖盒中放有除颜色外完全相同的红球、黄球和黑球各1个,顾客每次摸出1个球再放回,规定摸到红球奖励10元,摸到黄球奖励5元,摸到黑球无奖励.
(Ⅰ)求其前2次摸球所获奖金大于10元的概率;
(Ⅱ)求其3次摸球获得奖金恰为10元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线y=ex,直线x=0,x=$\frac{1}{2}$与x轴围成的平面图形绕x轴旋转一周得到旋转体的体积是(  )
A.$\frac{(e-1)π}{2}$B.$\frac{(e-1){π}}{3}$C.$\frac{(e-1)π}{4}$D.$\frac{(e-1)π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.异面直线l与m所成的角为$\frac{π}{3}$,异面直线l与n所成的角为$\frac{π}{4}$,则异面直线m与n所成角的范围是(  )
A.[$\frac{π}{6}$,$\frac{π}{2}$]B.[$\frac{π}{12}$,$\frac{π}{2}$]C.[$\frac{π}{12}$,$\frac{7π}{12}$]D.[$\frac{π}{6}$,$\frac{7π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点P(0,-1),Q(0,1),若直线 l:y=mx-2 上至少存在三个点 M,使得△PQM 为直角三角形,则实数 m 的取值范围是m≤-$\sqrt{3}$或m≥$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:($\frac{4}{9}$)${\;}^{\frac{1}{2}}$+(-5.6)0-(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+0.125${\;}^{-\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.正四面体ABCD的棱长为2,棱AD与平面α所成的角θ∈[$\frac{π}{3}$,$\frac{π}{2}$],且顶点A在平面α内,B,C,D均在平面α外,则棱BC的中点E到平面α的距离的取值范围是(  )
A.[$\frac{\sqrt{3}}{2}$,1]B.[$\frac{\sqrt{3}-\sqrt{2}}{2}$,1]C.[$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\frac{\sqrt{3}+\sqrt{2}}{2}$]D.[$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b∈R,a≠0,曲线y=$\frac{a+2}{x}$,y=ax+2b+1,若两条曲线在区间[3,4]上至少有一个公共点,则a2+b2的最小值=$\frac{1}{100}$.

查看答案和解析>>

同步练习册答案