精英家教网 > 高中数学 > 题目详情
设变量x、y满足
x+y≥1
x-y≥0
2x-y-2≥0
则目标函数z=2x+y的最小值为(  )
分析:先根据条件画出可行域,设z=2x+y,再利用几何意义求最值,将最小值转化为y轴上的截距最小,只需求出直线z=2x+y在y轴上截距的 最小值,从而得到z最小值即可.
解答:解:在坐标系中画出可行域
由z=2x+y可得y=-2x+z,则z表示直线y=-2x+z在y轴上的截距,截距越小,z越小
平移直线2x+y=0经过点B时,z=2x+y最小
2x-y-2=0
x-y=0
可得B(2,0)
则目标函数z=2x+y的最小值为z=2
故选A
点评:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设变量x,y满足
x+y≤1
x-y≤1
x≥0
,则x+2y的最大值和最小值分别为(  )
A、1,-1B、2,-2
C、1,-2D、2,-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•九江一模)设变量x,y满足|x-2|+|y-2|≤1,则
y-x
x+1
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)设变量x,y满足
x-y≤10
0≤x+y≤20
0≤y≤15
,则2x+3y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•唐山二模)设变量x、y满足
x+y≥1
x-y≥0
2x-y-2≤0
,则目标函数z=2x+y的最小值为(  )

查看答案和解析>>

同步练习册答案